Assistant Professor PANG Zhen




PhD in Statistics, National University of Singapore, Singapore
M.Sc. in Statistics, Beijing University of Technology, China
B.Sc. in Mathematics, Soochow University, China


Selected Publications


  • Lin, B. and Pang, Z. (2014). Tilted correlation screening learning in high dimensional data analysis. Journal of Computational and Graphical Statistics, 23, 478--496.
  • Lin, B., Pang, Z. and Jiang, J. (2013). Fixed and random effects selection by REML and pathwise coordinate optimization. Journal of Computational and Graphical Statistics, 22, 341--355.
  • Huang, Z., Pang, Z. and Zhang, R. (2013). Adaptive profile-empirical-likelihood inferences for generalized single-index models. Computational Statistics and Data Analysis, 62, 70--82.
  • Huang, Z., Pang, Z. and Hu, T. (2013). Testing structural change in partially linear single-index models with error-prone linear covariates. Computational Statistics and Data Analysis, 59, 121--133. 
  • Huang, Z., Lin, B., Feng, F. and Pang, Z. (2013). Efficient Penalized estimating method in the partially varying-coefficient single-index model. Journal of Multivariate Analysis, 114, 189--200.
  • Field, C. A., Pang, Z. and Welsh, A. H. (2012). On the boundedness and non-monotonicity of generalized score statistics. American Statistician, 66, 92--98.  
  • Huang, Z. and Pang, Z. (2012). Corrected empirical likelihood inference for right-censored partially linear Single-index model. Journal of Multivariate Analysis, 105, 276--284. 
  • Field, C. A., Pang, Z. and Welsh, A. H. (2010). Bootstrapping Robust Estimates for Clustered Data. the Journal of the American Statistical Association, 105, 1606--1616.
  • Field, C. A., Pang, Z. and Welsh, A. H. (2008). Bootstrapping data with multiple levels of variation. Canadian Journal of Statistics, 36, 521--539.  
  • Pang, Z. and Kuk, A. Y. C. (2007). Test of marginal compatibility and smoothing methods for exchangeable binary data with unequal cluster sizes. Biometrics, 63, 218--227. 
  • Pang, Z. and Kuk, A. Y. C. (2005). A shared response model for clustered binary data in developmental toxicity studies. Biometrics, 61, 1076--1084. 

Best viewed with Microsoft IE 6.0 and above