Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues

Man-Duen Choi, Zejun Huang, Chi-Kwong Li, and Nung-Sing Sze

Abstract

We show that for every invertible $n \times n$ complex matrix A there is an $n \times n$ diagonal invertible D such that AD has distinct eigenvalues. Using this result, we affirm a conjecture of Feng, Li, and Huang that an $n \times n$ matrix is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is singular and all its principal minors of size $n - 1$ are zero.

AMS Subject Classification. 15A18.

Keywords. Invertible matrices, diagonal matrices, distinct eigenvalues.

1 Introduction

Denote by M_n the set of $n \times n$ complex matrices. In [1], the authors pointed out that matrices with distinct eigenvalues have many nice properties. They then raised the question whether every invertible matrix in M_n is diagonally equivalent to a matrix with distinct eigenvalues, and conjectured that a matrix in M_n is not diagonally equivalent to a matrix with distinct eigenvalues if and only if it is singular and every principal minor of size $n - 1$ is zero. They provided a proof for matrices in M_n with $n \leq 3$, and demonstrated the complexity of the problem for matrices in M_4 using their approach. In this note, we affirm their conjecture by proving the following theorem.

Theorem 1.1 Suppose $A \in M_n$ is invertible. There is an invertible diagonal $D \in M_n$ such that AD has distinct eigenvalues.

Once this result is proved, we have the following corollary.
Corollary 1.2 Let $A \in M_n$. The following are equivalent.

(a) A is not diagonally equivalent to a matrix with distinct eigenvalues.

(b) There is no diagonal matrix D such that AD has distinct eigenvalues.

(c) The matrix A is singular and all principal minors of size $n-1$ are zero.

Proof. The implication (a) \Rightarrow (b) is clear. Suppose condition (c) does not hold. Then either A is invertible or A has an invertible principal submatrix of size $n-1$. Assume the former case holds. There is an invertible diagonal matrix D such that AD has distinct eigenvalues by Theorem 1.1. If the latter case holds, we may assume without loss of generality that the leading principal submatrix $A_1 \in M_{n-1}$ is invertible. By Theorem 1.1, there is an invertible diagonal matrix $D_1 \in M_{n-1}$ such that A_1D_1 has distinct (nonzero) eigenvalues. Let $D = D_1 \oplus [0]$. Then AD has distinct eigenvalues including zero as an eigenvalue. Thus, (b) cannot hold. So, we have proved (a) \Rightarrow (b) \Rightarrow (c).

Recall that the characteristic polynomial of a matrix $B \in M_n$ has the form $\det(xI_n - B) = x^n + b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \cdots + b_1x + b_0$, where $(-1)^jb_{n-j}$ is the sum of $j \times j$ principal minors of B. Suppose condition (c) holds. Since the principal minors of D_1AD_2 are scalar multiples of the corresponding principal minors of A, then D_1AD_2 has characteristic polynomial of the form $\det(xI_n - D_1AD_2) = x^n + a_{n-1}x^{n-1} + \cdots + a_2x^2$ so that 0 is a root with multiplicity at least two. Thus, D_1AD_2 cannot have n distinct eigenvalues. So, the implication (c) \Rightarrow (a) is proved.

Note that the set of diagonal matrices is an n-dimensional subspace in M_n. We can extend Theorem 1.1 to the following.

Corollary 1.3 Suppose V is a subspace of matrices in M_n.

(a) If there are invertible matrices R and S such that $RVS = \{RXS : X \in V\}$ contains the subspace of diagonal matrices, then for any invertible $A \in M_n$ there is $X \in V$ such that AX has distinct eigenvalues.

(b) If there are invertible matrices R and S such that RVS has zero first row and zero last column for every $X \in V$, then $A = SR$ is invertible and AX is similar to RXS which cannot have distinct eigenvalues for any $X \in V$.

Proof. (a) Suppose A is invertible. Then there is a diagonal matrix D such that $S^{-1}AR^{-1}D$ has distinct eigenvalues by Theorem 1.1. Set $X = R^{-1}DS^{-1} \in V$. Notice that AX has distinct eigenvalues as $S^{-1}(AX)S = S^{-1}(AR^{-1}DS^{-1})S = (S^{-1}AR^{-1})D$.

Assertion (b) can be verified readily.

2 Proof of Theorem 1.1

We will prove Theorem 1.1 by induction on n. The result is clear if $A \in M_1$. Assume that the result holds for all $k \times k$ invertible matrices with $1 \leq k < n$. Suppose $A \in M_n$ is invertible. We consider two cases.
Case 1. If all \(k \times k \) principal minors of \(A \) are singular for \(k = 1, \ldots, n-1 \), then the characteristic polynomial of \(A \) has the form \(x^n - a_0 \) and has \(n \) distinct roots. So, the result holds with \(D = I_n \).

Case 2. Suppose \(A \) has an invertible \(k \times k \) principal minor. Without loss of generality, we may assume that \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) such that \(A_{11} \in M_k \) is invertible for some \(1 \leq k < n \). Then the Schur complement of \(A_{22} \) equals \(B = A_{22} - A_{21}A_{11}^{-1}A_{12} \) which is invertible; see [2, pp. 21-22].

By induction assumption, there are diagonal invertible \(D_1 \) \(D_2 \) \(D \) such that each of \(A_{11}D_1 \) and \(BD_2 \) has distinct nonzero eigenvalues, say, \(\lambda_1, \ldots, \lambda_k \) and \(\lambda_{k+1}, \ldots, \lambda_n \), respectively. Thus, \(A_{11}D_1 \) and \(BD_2 \) are diagonalizable and there are invertible \(S_1 \in M_k \) and \(S_2 \in M_{n-k} \) such that \(S_1A_{11}D_1S_1^{-1} = \Lambda_1 = \text{diag} (\lambda_1, \ldots, \lambda_k) \) and \(S_2BD_2S_2^{-1} = \Lambda_2 = \text{diag} (\lambda_{k+1}, \ldots, \lambda_n) \). Let \(D_{r,s} = rD_1 \oplus sD_2 \).

The proof is complete if one can find some subitable \(r \) and \(s \) so that \(AD_{r,s} \) has distinct eigenvalues. Notice that \(AD_{r,s} \) has the same eigenvalues as

\[
\tilde{A} = \begin{bmatrix} S_1 & 0 \\ 0 & S_2 \end{bmatrix} \begin{bmatrix} I_k & 0 \\ -A_{21}A_{11}^{-1} & I_{n-k} \end{bmatrix} \begin{bmatrix} I_k & 0 \\ A_{21}A_{11}^{-1} & I_{n-k} \end{bmatrix} \begin{bmatrix} S_1^{-1} & 0 \\ 0 & s^{-1}S_2^{-1} \end{bmatrix}
= \begin{bmatrix} r\Lambda_1 + sS_1A_{12}D_2A_{21}A_{11}^{-1}S_1^{-1} & S_1A_{12}D_2S_2^{-1} \\ s^2S_2BD_2A_{21}A_{11}^{-1}S_1^{-1} & s\Lambda_2 \end{bmatrix}.
\]

Denote by \(D(a,d) \) the closed disk in \(\mathbb{C} \) centered at \(a \) with radius \(d \geq 0 \). Suppose the \(k \times k \) matrix \(S_1A_{12}D_2A_{21}A_{11}^{-1}S_1^{-1} \) has diagonal entries \(\mu_1, \ldots, \mu_k \) and let

\[
d_1 = k\|S_1A_{12}D_2A_{21}A_{11}^{-1}S_1^{-1}\|, \quad d_2 = (n-k)\|S_1A_{12}D_2S_2^{-1}\|, \quad \text{and} \quad d_3 = k\|S_2BD_2A_{21}A_{11}^{-1}S_1^{-1}\|,
\]

where \(\| \cdot \| \) is the operator norm. By Geršgorin disk result (see [2, pp.344-347]), the eigenvalues of \(\tilde{A} \) must lie in the union of the \(n \) Geršgorin disks, which is a subset of the union of \(n \) disks

\[
D(r\lambda_1 + s\mu_1, sd_1 + d_2), \ldots, D(r\lambda_k + s\mu_k, sd_1 + d_2), D(s\lambda_{k+1}, s^2d_3), \ldots, D(s\lambda_n, s^2d_3).
\]

We can choose sufficiently large \(r > 0 \) and sufficiently small \(s > 0 \) so that these disks are disjoint, and hence \(\tilde{A} \) has \(n \) disjoint Geršgorin disks. Then \(\tilde{A} \) has distinct eigenvalues.

We thank Editor Zhan for sending us the two related references [3, 4]. In these papers, the author proved following. Suppose \(A \) is an \(n \times n \) matrix and \(a_1, \ldots, a_n \) are complex numbers. Then there is a diagonal matrix \(E \) such that \(A + E \) has eigenvalues \(a_1, \ldots, a_n \). Moreover, if all principal minors of \(A \) are nonzero, then there is a diagonal matrix \(D \) such that \(AD \) has eigenvalues \(a_1, \ldots, a_n \).

Note that the assumption on the principal minors of \(A \) is important in the second assertion. Obviously, if \(\det(A) = 0 \), then one cannot find diagonal \(D \) such that \(AD \) has \(n \) nonzero eigenvalues. Even if we remove this obvious obstacle and assume that \(A \) is invertible, one may not be able to find diagonal \(D \) so that \(AD \) has prescribed eigenvalues. For example, if \(\{E_{1,1}, E_{1,2}, \ldots, E_{n,n}\} \) is the standard basis for \(M_n \) and \(A = E_{1,2} + \cdots + E_{n-1,n} \), then the eigenvalues of \(AD \) always have the form \(z, zw, \ldots, zw^{n-1} \) for some \(z \in \mathbb{C} \), where \(w \) is the primitive \(n \)th root of unity.
It is interesting to determine the condition on A so that for any complex numbers a_1, \ldots, a_n, one can find a diagonal D such that AD has a_1, \ldots, a_n as eigenvalues.

Acknowledgment

Research of Choi was supported by a NSERC grant. Research of Huang was supported by a HK RGC grant. Research of Li was supported by a USA NSF grant, and a HK RGC grant. Research of Sze was supported by HK RGC grants.

References

