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Abstract

Clustering is a fundamental problem in unsuper-
vised learning. Popular methods like K-means,
may suffer from instability as they are prone to
get stuck in its local minima. Recently, the sum-
of-norms (SON) model (also known as cluster-
ing path), which is a convex relaxation of hier-
archical clustering model, has been proposed in
(Lindsten et al., 2011) and (Hocking et al., 2011).
Although numerical algorithms like alternating
direction method of multipliers (ADMM) and al-
ternating minimization algorithm (AMA) have
been proposed to solve convex clustering model
(Chi & Lange, 2015), it is known to be very chal-
lenging to solve large-scale problems. In this pa-
per, we propose a semismooth Newton based aug-
mented Lagrangian method for large-scale convex
clustering problems. Extensive numerical exper-
iments on both simulated and real data demon-
strate that our algorithm is highly efficient and
robust for solving large-scale problems. More-
over, the numerical results also show the superior
performance and scalability of our algorithm com-
paring to existing first-order methods.

1. Introduction

Clustering is one of the most fundamental problems in un-
supervised learning. Traditional clustering models such as
K-means clustering, hierarchical clustering may suffer from
instability because of the non-convexity of the model and
the difficulties in finding a global optimal solution. The
clustering results are generally highly dependent on the
initialization and the results could differ significantly with
different initializations. Moreover, these clustering models
require the prior knowledge about the number of clusters
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which is not available in many real applications. There-
fore, in real applications, k-means is typically tried with
different cluster numbers and the user will then decide on
a suitable value based on his judgment on which computed
result agrees best with his domain knowledge or experience.
Obviously, such a process could make the clustering results
subjective.

In order to overcome the above issues, a new cluster-
ing model has been proposed recently (Lindsten et al.,
2011; Hocking et al., 2011) which is generally more ro-
bust comparing to those traditional ones. Let A € R¥*" =
[ai, a9, - ,a,] be a given data matrix with n observations
and d features. Convex clustering model for these n obser-
vations solves the following convex optimization problem:

1
min = xi —aill? > lIxi = x5l (D)
=1

XeRdxn 2 4 —
1= 1<J

where || - || denotes the 2-norm, and X = [xq,...,Xy]. The
g-norm || - ||, above with ¢ > 1 ensures the convexity of the
model. The popular choices of g are ¢ € {1, 2, co}. In this
paper, we focus on ¢ = 2. After solving (1) and obtaining
the optimal solution X*, a; and a; belong to the same clus-
ter if and only if X} = x;f. In other words, x is the centroid
for observation a;. (Here we used the word “centroid” to
mean the approximate one associated with a; but not the
final centroid of the cluster to which a; belongs to.) The
idea behind this model is that if two input observations a;
and a; belong to same cluster, then their corresponding cen-
troids x; and x; should be the same. The first term in (1) is
the fidelity term. The second term is the regularization term
to penalize the difference between different centroids and
enforce the property that centroids for observations in the
same cluster should be identical.

The advantages of convex clustering lie mainly in two as-
pects. First, since the clustering model (1) is strongly con-
vex, the optimal solution for a given positive ~ is unique
and is more easily obtainable than traditional clustering al-
gorithms like K-means. Second, instead of requiring the
prior knowledge of the cluster number, we can generate a
clustering path via solving (1) for a sequence of positive
values of .

To handle cluster recovery for large-scale data sets, various
researchers, e.g., (Pelckmans et al., 2005; Lindsten et al.,
2011; Hocking et al., 2011; Zhu et al., 2014; Tan & Wit-
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ten, 2015; Panahi et al., 2017) have suggested the following
weighted convex clustering model modified from (1)

R
Jmin 5 Dl a4 3wl =l @
=1 (i.9)e€

where the edge set & = U, {(i,5) | jisi’s k-nearest
neighbors,i < j < n} and w;; = exp(—¢[la; — a;|?)
for (i,j) € £. We can regard the original convex clustering
model (1) as a special case if we take k = n and ¢ = 0.
The advantages just mentioned and the success of the convex
model (1) in recovering clusters in many examples with well
selected values of v have motivated researchers to provide
theoretical guarantees on the cluster recovery property of
(1). However, the first theoretical result on cluster recovery
established in (Zhu et al., 2014) is valid for only two clusters.
It showed that the model (1) can recover the two clusters
perfectly if the data points are drawn from two cubes and
the distance between these two cubes are large enough. Tan
& Witten (2015) analyzed the statistical properties of (1).
Recently, Panahi et al. (2017) provided theoretical results
for the general k clusters case under relatively mild suffi-
cient conditions, thus laying the theoretical foundation for
convex clustering. However, the conditions provided in the
theoretical analysis are usually not checkable before we find
the right clusters and the perfect value of v is unknown. In
practice, we need to try a sequence of values of 7y to generate
a clustering path.

The challenges for the convex model (1) to obtain mean-
ingful cluster recovery is then to solve it efficiently for a
range of values of 7. Lindsten et al. (2011) used the off-the-
shelf solver, CVX, to generate the solution path. However,
Hocking et al. (2011) realized that CVX is competitive only
for small-size problems and it does not scale well when the
number of data points increases. Thus the paper introduced
three algorithms based on the subgradient methods for dif-
ferent regularizers. Recently, some new algorithms have
been proposed to solve this problem. Chi & Lange (2015)
adapted the ADMM and AMA to solve (1). However, based
on our experiments, both algorithms may still encounter
scalability issues, albeit less severe than CVX. Furthermore,
the efficiency of these two algorithms are sensitive to the
parameter value ~y. This is not favorable since we need to
solve (1) with v in a relative large range to generate the clus-
tering path. In (Panahi et al., 2017), the authors proposed a
stochastic splitting algorithm for (1) in an attempt to resolve
the aforementioned scalability issues. Although this stochas-
tic approach scales well with the problem scale (n in (1)),
the convergence rate shown in (Panahi et al., 2017) is rather
weak in that it requires at least [ > n* /e iterations to gen-
erate a solution X' such that | X! — X*||? < ¢ is satisfied
with high probability. (Here and below, || - || is also used to
denote the Frobenius norm of a matrix.) Moreover, because
the error estimate is given in the sense of high probability, it

is difficult to design appropriate stopping condition for the
algorithm in practice.

As the reader may observe, all the existing algorithms are
purely first-order methods that do not use any second-order
information underlying the convex clustering model. In this
paper, we design and analyze a deterministic second-order
algorithm, the semismooth Newton based augmented La-
grangian method, to solve the convex clustering model. The
algorithm is not only proven to be theoretically efficient but
it is also demonstrated to be practically highly efficient and
robust.

2. Related work

In addition to the papers (Pelckmans et al., 2005; Lindsten
et al., 2011; Hocking et al., 2011; Zhu et al., 2014; Tan &
Witten, 2015; Panahi et al., 2017) on the convex models (1)
and (2), other convex models have been proposed to deal
with the non-convexity of the K-means clustering model.
One such model is the convex relaxation of the K-means
via semidefinite programming (SDP) (Peng & Wei, 2007;
Awasthi et al., 2015; Mixon et al., 2016). The computa-
tional efficiency of SDP based relaxations highly depends
on the efficiency of the available SDP solvers. While recent
progress (Zhao et al., 2010; Yang et al., 2015; Sun et al.,
2017) in solving large-scale SDPs allows one to solve the
SDP relaxation problem for clustering 2-3 thousand points,
it is however prohibitively expensive to solve the problem
when n goes beyond 3000.

The work in (Chi & Lange, 2015) has implicitly demon-
strated that it is generally cheaper to solve the model (2)
instead of the SDP relaxation model. Together with the
motivation from the paper (Li et al., 2018) that proposed a
highly efficient semismooth Newton augmented Lagrangian
method (ALM) to solve Lasso and fused Lasso problems,
we are thus inspired to adapt the ALM framework for solv-
ing the convex clustering model (2) in this paper.

3. A semismooth Newton-CG augmented
Lagrangian method with fast linear
convergence

In this section, we introduce a fast convergent ALM for
solving the convex clustering model (2). Before that, we
introduce some preliminaries and notations.

3.1. Preliminaries and notation

For a given undirected graph G = (V, £) with n vertices
and edges defined in £, we define the symmetric adjacency
matrix J € R"*" with entries

D B Y A (A RSp
Jji = Jij = { 0 otherwise.
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Based on an enumeration of the index pairs in £ (say in
the lexicographic order), which we denote by (3, j) for
the pair (7, j), we define the node-arc incidence matrices
T, J € R™*I¢l a5

glen _ L if k=i, Gy _ ] L if k=7,
k 0 otherwise; <% 0 otherwise,
N 3
where 7, ]i(w ) is the k-th entry of the /(i, 5)-th column of Jj.
Similarly for j,i(w).

Proposition 1. With matrices J, J, J defined above, we
have the following results

JIT+II" = diag(Je), TT"+TIT" = J,
where e € R" is the column vector of all ones.

Now, for given variables X € Rxn 7 ¢ RI*¥I€l and the
graph G, we define the linear operator B : R¥*™ — R*I€l
and its adjoint B* : R¥¥I€l — RIX™ respectively, by

B(X) = [(xi = xj)](i,jyee = X (T = T),
and B
B (2)=2(J"-J").
Thus, by Proposition (1), we have

B (B(X))=X(JgJ"'-9I"-JI"+II") = XLy,
“4)

where L; = diag(Je) — J € R™ " is the unweighted

Laplacian matrix associated with the graph G.

For a convex function p : RY — (—o0, +00], which is

proper and closed, the proximal mapping Prox,(«) for p at

any z € R? with ¢ > 0 is defined by

1
Prox,(z) = arg néigfl{tp(u) + §||u —z|?}. 5

It is well known that proximal mappings are important for
designing optimization algorithms and they have been well
studied. The proximal mappings for many common used
functions have closed form formulas. Here, we summarize
those that are related to this paper in Table 1. Note that P

Table 1. Proximal maps for selected functions
p()  Proxsp(x)

-1l
- 1l2

IS

Comment

[1 - L] x;  Elementwise soft-thresholding

B

+
[1 Il xt ER RS Blockwise soft-thresholding
+
x — Pis(x) S is the unit ¢;-ball

denotes the projection onto a given closed convex set C'.
In this paper, we will often make use of the following
Moreau identity

Prox, () + tProx,- /1(x/t) = =,

where ¢t > 0 and p* is the conjugate function of p.

3.2. Duality and optimality conditions

In this section, we will derive the dual problem of (2) and
the KKT conditions. First, we write (2) equivalently in the
following compact form

g1 ) B
(P) min {3 X — 4> + p(U) | B(X) ~ U =0},
where p(U) = 732 jjee w;||UY9)||. Here U'9) de-

notes the (i, j)-th column of U € R4*I€l,
The dual problem is given by

1 2 * _
(D) max{(AV)=5IVI* | B'(2)-V =0.Z € Q.

where Q0 = {Z € R¥*IEl | | Z1@9)|| < ywyy, (i, §) € EY.
Now, denote by [ the Lagrangian function for (P):

U(X,U32) = 51X = AI> +p(U) + (2, B(X) - U). ©)

Furthermore, given ¢ > 0, the augmented Lagrangian func-
tion associated with (P) is given by

Lo(X,U;2) = (X, U 2) + S| B(X) = U|[%.

The KKT conditions for (P) and (D) are given by

V+4X-A = 0,
U-Prox,(U+2Z) = 0

KKT P ’
( ) B(X)-U = 0,
B*(Z)-V =0

3.3. A semismooth Newton-CG augmented Lagrangian
method for solving (2)

In this section, we will design an inexact ALM for solv-
ing the primal problem (P) but it will also solve (D) as a
byproduct. Since a semismooth Newton-CG method will
be used to solve the subproblems involved in the method,
we call our algorithm a semismooth Newton-CG augmented
Lagrangian method (SSNAL in short). The algorithm for
solving (P) is shown in Algorithm 1. To ensure the con-
vergence of the inexact ALM in Algorithm 1, we need the
following stopping criterion for solving the subproblem (7)
in each iteration:

(A)  dist(0,09(X* UM)) < ¢/ max{1, /o },

where {¢;} is a given summable sequence of nonnegative
numbers.

3.4. Solving the subproblem (7)

The inexact ALM is a well studied and efficiently algorith-
mic framework for convex composite optimization problems.
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Algorithm 1 SSNAL for (P)

Initialization: Choose (X°, U?) € R¥*" x R4*I¢l and
7% € R*I€l 55 > 0 and a summable nonnegative
sequence {¢g }.
repeat

Step 1. Compute

motivates us to develop a semismooth Newton method to
solve the nonsmooth equation (9). Before we present our
semismooth Newton method, we introduce the following
definition of semismoothness.

Definition 1. (Semismoothness). Let F' : O C X — ) be
a locally Lipschitz continuous function on an open set Q.
F is said to be semismooth at x € O if F is directionally

(XM UM &~ arg min{® (X, U) = L, (X, U; Zk)}diﬁ‘erentiable at x and for any V. € OF(x + Azx) with

(7
to satisfy the condition (A) with the tolerance €.
Step 2. Compute

Zk:+1 _ Zk +O'k>(B(Xk+1) _ Uk+1).

Step 3. Update 0y4+1 T 000 < 00.
until Stopping criterion is satisfied.

The key challenge in making the inexact ALM efficient nu-
merically is solving the subproblem (7) in each iteration
efficiently to the required accuracy. In this paper, we will de-
sign a semismooth Newton-CG method to solve (7). We will
establish its quadratic convergence and derive sophisticated
numerical techniques to solve the associated semismooth
Newton equations very efficiently by exploiting the underly-
ing second-order structured sparsity in the subproblem.
For a given ¢ and Z, the subproblem (7) in each iteration
has the following form:
min O(X,U):=L,(X,U; Z). (8)
XERdX",UERdX‘g‘
Since ®(X, U) is a strongly convex function, the level set
{(X,0)]|®(X,U) < a}isaclosed and bounded convex set
for any o € R. Hence (8) admits a unique optimal solution
which we denote as (X, U). Now, for any X, denote

$(X) = infy ®(X,U)
= 311X — AJ* + p(Prox, /o (B(X) + 07 2))
+ 35 [Proxg, (0B(X) + 2) |2 - 351121

Therefore, we can compute (X, U) = arg min ®(X, U) via
X = argmin¢(X), U =Prox,/,(B(X)+o'2).

Since ¢(-) is strongly convex and continuously differen-
tiable on R?*™ with

Vo(X) = X — A+ B*(Prox,p- (0B(X) + 2)),

we know that X can be obtained by solving the following
nonsmooth equation

Vé(X) = 0. )

It is well known that Newton’s method is the best method
to solve nonlinear equations if it can be implemented effi-
ciently. However, Newton’s method requires the smooth-
ness of V¢(X) which is not the case in our problem. This

Az — 0,
F(z+ Az) — F(x) — VAz = o||Az|]).

F'is said to be strongly semismooth at x if F is semismooth
at  and

F(x + Az) — F(z) — VAz = O(]| Az|]?).

F'is said to be a semismooth (respectively, strongly semis-
mooth) function on O if it is semismooth (respectively,
strongly semismooth) everywhere in Q.

Lemma 1. Foranyt > 0, the proximal mapping Prox,).,
is strongly semismooth.

Now, we derive the generalized Jacobian of the locally Lips-
chitz continuous function V¢(-). For any given X € R4*",
the following set-valued map is well defined:

PH(X) == {T+oB*VB|V € OProx,,-(Z + cB(X))

= {Z+0B*(Z—P)B|P € OProx,,,(1Z + B(X))}, (10)

where OProx,« (Z + oB(X)) and OProx,,, (1 Z + B(X))
are the Clarke subdifferentials of the Lipschitz continuous
mappings Prox,,~ and Prox,,,(-) at Z +0B(X) and %Z +
B(X), respectively. Note that from (Clarke, 1983) [p.75]
and (Hiriart-Urruty et al., 1984) [Example 2.5], we have

0*¢(X)(d) = 0°¢(X)(d), Vd € R™™,

where 9%¢(X) is the generalized Hessian of ¢ at X. Thus
we may use 924(X) as the surrogate for 82¢(X). Since
Z—-P =V € OProxqp-(-) is symmetric and positive
semdefinite, the elements in ézng(X ) are positive definite,
and this guarantees that (11) in Algorithm 2 is well defined.
Now, we can present our semismooth Newton-CG (SSNCG)
method for solving (9) and we could expect to get a fast
superlinear or even quadratic convergence.

3.5. Using the conjugate gradient method to solve (11)

In this section, we will discuss how to solve the very large
symmetric positive definite linear system (11) to compute
the Newton direction efficiently. As the matrix representa-
tion of the coefficient linear operator V; in (11) is expensive
to compute and factorize, we will adopt the conjugate gradi-
ent (CG) method to solve it. The computational cost for CG



Efficient Algorithm for Convex Clustering

Algorithm 2 SSNCG for (9)
Initialization: Given X° € R™*" 1 € (0,1/2), 7 €
(0,1],and 7,0 € (0,1). Forj =0,1,...
repeat
Step 1. Pick an element V; in 92¢(X7) that is defined
in (10). Apply the conjugate gradient (CG) method to
find an approximate solution d’ € R?*™ to

Vi(d) = —V(X7), (11)

st [Vi(d) + Vo(X7) || < min(7, [[Vo(XT)[[1F7).
Step 2. (Line Search) Set o; = §™7, where m; is the
first nonnegative integer m for which

O(X7 +0Md’) < ¢(X7) + o™ (VH(X), ).
Step 3. Set X7t = XJ + o;d.

until Stopping criterion based on ||V (X711)| is satis-
fied.

is highly dependent on the cost for computing the matrix-
vector product Vj(ci) for any given d € R%". Thus we
will need to analyze how this product can be computed effi-
ciently.
Let D := B(X7) 4+ ¢~ 'Z. For (i, ) € £, define

o tywi

[ DL

Q5 =
o0

Note that for the given D € R**I€l, the cost for computing
a is O(d|€|) arithmetic operations. For later convenience,
denote

if [ D' > 0,
if || D! = 0.

E={(i,j) €& |ay; <1},

Now we choose P € dProx,,,, (D) explicitly. We can take
P RIXIEl 5 RIXIE| that is defined by

<Dl(ivj)7 Ul(i,j)> Dl(i,j)

N Qi DG |2 R
(P =9 4 (1= iU if (i) € £,
0 otherwise.

To compute V;(X) = X + 0B*B(X) — o B*PB(X) effi-
ciently for a given X € R¥*", we need the efficient compu-
tation of B*PB(X) by using the following proposition.
Proposition 2. Consider the symmetric matrix M € R"*"
defined by M;; = 1 — «ay; if (i,j) € £ and M;; = 0
otherwise. Let Y = [M;(x; — x;)](i, jyee = X(M — M),
where M and M are defined similarly as in (3) for the
matrix M. Then we have

B*(Y) = XLy,
where Ly is the Laplacian matrix associated with M. The

cost of computing the result B*(Y') is O(d|§|) arithmetic
operations.

Now, define p € RI¢I by

ey = | TR D i =), (0 ) € €,
w7 0, otherwise.

For the given D € R*I€1 the cost for computing p is
O(d|€|) arithmetic operations. Let W) = p;; -y D!@3).
Then,

B*(W)=W(J" - J") = Ddiag(p)(J" = T7).

Thus, the computing cost for B*PB(X) = B*(Y)+B*(W)
in total is O(d |<SA' ), where Y is given in Proposition 2.
Observe that a;; < 1 means that j is in ¢’s nearest £ neigh-
bors but does not belong to the same cluster as ¢, so |6A’ |
should be much smaller than |€|. On the other hand, for
a;; > 1, it means that points 7 and j are in the same cluster.
From this analysis, we can expect most of the columns of
the matrix P(B(X)) to be zero. We call such a property
inherited from the generalized Hessian of ¢(-) at X as the
second-order sparsity. It is because of this important prop-
erty that we are able to compute B*PB(X) at a very low
cost.

3.6. Convergence results

In this section, we will establish the convergence results
for both SSNAL and SSNCG under mild assumptions. First,
we present the following global convergence result of our
proposed Algorithm SSNAL.

Theorem 1. Let {(X* U* Z*)} be the sequence gener-
ated by Algorithm I with stopping criterion (A). Then the
sequence {X*} is bounded and converges to the unique
optimal solution of (P), and |B(X*) — U*|| converges to
0. In addition, {Z*} is also bounded and converges to the
optimal solution Z* € Q of (D).

The above convergence theorem can be obtained from
(Rockafellar, 1976a;b) without much difficulties. Next, we
state the convergence property for the semismooth Newton
algorithm SSNCG used to solve the subproblems in Algo-
rithm 1.

Theorem 2. Assume that Prox,y(-) is strongly semismooth
on int(dom(p)). Let the sequence {X’} be generated by
Algorithm SSNCG. Then {X7} converges to the unique
solution X of the problem in (9) and

|X7F = X[ = O(|X7 — X|[**7),

where T € (0,1] is a given constant in the algorithm, which
is typically chosen to be 0.5.

The proof of this theorem could be found in the supple-
mentary material. Note that by Lemma 1, the strong semis-
moothness assumption holds true for our model (2).
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3.7. Generating an initial point

In our implementation, we use the following inexact alter-
nating direction method of multipliers (IADMM) developed
in (Chen et al., 2017) to generate an initial point to warm-
start SSNAL!. Note that in Step 1, X**1 is a computed

Algorithm 3 1ADMM for (P)

Initialization: Choose o > 0, (X°, U, Z%) € R¥*" x
RAXIEl  REXI€] and a summable nonnegative sequence
{€x}. Fork=0,1,...,
repeat

Step 1. Let RF = A+ oB*(U* — 0= Z*). Compute

Xk & argm)}n{ﬁg(X, U*; z%)},

UMt = argmin{L, (X", U; 24)},

where X**1 is an inexact solution satisfying the accu-
racy requirement that || (I,,+oB*B) X 1 - RF|| < .
Step 2. Compute

Zk+1 _ Zk + Ta_k<B(Xk+1) . Uk+1),

where 7 € (0, 1+2\/5) is typically chosen to be 1.618.

until the stopping criterion is satisfied.

solution for the following large linear system of equations:

(I, +oB'B)X = R¥ —

“)

To compute X**1, we apply the conjugate gradient method
to solve the above linear system.

4. Numerical experiments

In this section, we show the superior performance of our pro-
posed algorithm SSNAL on both simulated and real datasets,
comparing to the popular algorithms such as ADMM and
AMA which are proposed in (Chi & Lange, 2015). In par-
ticular, we will focus on the efficiency, scalability, and ro-
bustness of our algorithm for different values of v. Also,
we will show the performance of our algorithm on large
datasets and unbalanced data. Previous research on scalabil-
ity and performance of (2) on unbalanced datasets is limited.
The problem sizes of the instances tested in (Chi & Lange,
2015) and other related papers are only several hundreds
(n <500 in (Chi & Lange, 2015), n < 600 in (Panahi et al.,
2017)), which are not large enough to clearly demonstrate
the scalability of the algorithms. In this paper, we will show
numerical results for n up to 20000. Also, we will analyze

"With the global convergence result stated in Theorem 1, the
performance of SSNAL does not sensitively depend on the initial
points, but it is still helpful if we can choose a good one.

(I, +oL))XT = (RMT.

the sensitivity of the computational efficiency of SSNAL and
AMA, with respect to different choices of the parameters in
(2), such as k (number of nearest neighbors) and ~.

Our attention in this paper focuses on solving (2) with ¢ = 2
since the rotational invariance of the /5 norm makes it a ro-
bust choice in practice. Also, this case is more challenging
than ¢ = 1 or ¢ = 00.? As the results reported in (Chi
& Lange, 2015) have been regarded as the benchmark for
the convex clustering model (2), we will compare our algo-
rithm with the open source software CVXCLUSTR? in (Chi
& Lange, 2015), which is an R package with key functions
written in C. We write our code in MATLAB without any
dedicated C functions. All our computational results are
obtained from a desktop having 16 cores with 32 Intel Xeon
E5-2650 processors at 2.6 GHz and 64 GB memory.

In our implementation, we stop our algorithm based on the
following relative KKT residual:

maX{an D, 77} S €,

where i)
_ IBx=U]| _ 2(iee max{0,[| 27 o —ywi;}
e L e )
n— I1B*(Z)+ X — A|| + ||[U — Prox, (U + 2)||
L+ [lA[ + (1T

and € > 0 is a given tolerance. In our experiments, we set
€ = 1076 unless specified otherwise. Since the numerical
results reported in (Chi & Lange, 2015) have demonstrated
the superior performance of AMA over ADMM, we will
mainly compare our proposed algorithm with AMA. We
note that CVXCLUSTR does not use the relative KKT resid-
ual as its stopping criterion but used the duality gap in AMA
and max{np,np} < € in ADMM. To make a fair compari-
son, we first solve (2) using SSNAL with a given tolerance
€, and denote the primal objective value obtained as Pggyq;-
Then, we run AMA in CVXCLUSTR and stop it as soon as
the computed primal objective function value (Paps4) is
close enough to Pggpqi, i.€.,

Parra — Pssnar < 107°Psgpar. (12)

We note that since (2) is an unconstrained problem, the
quality of the computed solutions can directly be compared
based on the objective function values. We also stop AMA
if the maximum of 107 iterations is reached.

When we generate the clustering path for the first parameter
value of 7, we first run the IADMM introduced in Algorithm
3 for 100 iterations to generate an initial point, then we use
SSNAL to solve (2). After that, we use the previously com-
puted optimal solution for the lastest y as the initial point to
warm-start SSNAL for solving the problem corresponding
to the next . The same strategy is used in CVXCLUSTR.

2Qur algorithm can be generalized to solve (2) with ¢ = 1 and
q = oo easily.
3https://cran.r-project.org/web/packages/cvxclustr/index.html
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4.1. Simulated data

In this section, we show the performance of our algorithm
SSNAL on two simulated datasets: Two Half-Moon and
Unbalanced Gaussian (Rezaei & Frinti, 2016). We com-
pare our SSNAL with the AMA in (Chi & Lange, 2015) on
different problem scales. The numerical results in Table 2
show the superior performance of SSNAL. We also visual-
ize some selected recovery results for Two Half-moon and
Unbalanced Gaussian in Figure 1.

Two HALF-MOON DATA

The simulated data of two interlocking half-moons in R? is
one of the most popular test examples in clustering. Here
we compare the computational time between our proposed
SSNAL and AMA on this dataset with different problem
scales. We note that AMA could not satisfy the stopping
criteria (12) within 100000 iterations when n is large. In the
experiments, we choose k = 10, ¢ = 0.5 (for the weights
w;j) and y € [0.2 : 0.2 : 10] to generate the clustering path.
After generating the clustering path with SSNAL, we repeat
the experiments using the same pre-stored primal objective
values and stop the AMA using the criterion (12). We report
the average time for solving each problem (50 in total) in
Table 2. Observe that our SSNAL can be more than 50 times
faster than AMA.

Table 2. Computation time (in seconds) comparison on Two Half-
Moon. (— means that the maximum iteration is reached)

n 200 500 1000 2000 5000 10000
AMA 0.41 4.43 28.27 78.36 — —
SsnaL  0.11  0.15  0.51 1.63 7.69 20.96

UNBALANCED GAUSSIAN DATA

Next, we show the performance of SSNAL and AMA on
the Unbalanced Gaussian data R? (Rezaei & Frinti, 2016).
We can see from Figure 1 that the convex clustering model
(2) can recover the cluster assignments perfectly with well
chosen parameters. In this experiment, we solve (2) with
k =10,¢ = 0.5and vy € [0.2 : 0.2 : 2]. For this dataset,
we have scaled it so that each entry is in the interval [0, 1].
In experiments, we find that AMA has difficulties in reach-
ing the stopping criterion (12). We summarize some selected
results in Table 3, wherein we report the computation times
and iterations for both AMA and SSNAL. Since the main
cost for SSNAL is in the inner iterations of SSNCG, so we
show the iterations of SSNCG for comparison. The com-
puted primal objective values and other results are reported
in the supplementary material.

Table 3. Numerical results on Unbalanced Gaussian data. The
parameters used are k = 10, ¢ = 0.5.

¥ 0.2 0.4 0.6 0.8 1.0

tAMA 264.54 256.21 260.06 262.16 263.27

tGSNAL 115 057 0.67 0.66  0.86

Iterama 100000 97560 97333 100000 100000

Iterggneg 23 21 24 24 27
4.2. Real data

In this section, we compare the performance of our proposed
SSNAL with AMA on some real datasets, namely, MNIST,
Fisher Iris, WINE, Yale Face B(10Train subset).* For real
datasets, a preprocessing step is sometimes necessary to
transform the data to one whose features are meaningful for
clustering. Thus, for a subset of MNIST (we selected a sub-
set because AMA cannot handle the whole dataset), we first
apply the preprocessing method described in (Mixon et al.,
2016). Then we apply the model (2) on the preprocessed
data. We summarize the comparison results between SSNAL
and AMA on real datasets in Table 4.

Table 4. Computation time comparison on real data. (*) means that
the maximum of 100000 iterations is reached for all instances.

DATASET d n AMA(S) SSNAL(S)
MNIST 10 1000 79.48 1.54
MNIST 10 10000 1753.8* 69.3
FISHER IRIS 4 150 0.58 0.16
WINE 13 178 2.62 0.19
YALE FACEB 1024 760 211.36 52.71

4.3. Sensitivity with different ~

In order to generate a clustering path for a given dataset, we
need to solve (2) for a sequence of v > 0. So the stability of
the performance of the optimization algorithm with different
« is very important. In our experiments, we have found that
the performance of AMA is rather sensitive to the value of
in that the time taken to solve problems with different values
of 7y can vary widely. However, SSNAL is much more stable.
In Figure 2, we show the comparison between SSNAL and
AMA on both the Two Half-Moon and MNIST datasets with
v €10.2:0.2:10].

4.4. Scalability of our proposed algorithm

In this section, we demonstrate the scalability of our algo-
rithm SSNAL. Before we show the numerical results, we
give some insights as to why our algorithm could be scalable.
Recall that the most computationally expensive step in our
framework is in using the semismooth Newton-CG method
to solve (9). However, if we look inside the algorithm, we

“See the references for the data sources.
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Visulizing Clustering For Two Half Moon (7 = 1000)

Visulizing Clustering For Unbalanced Gaussian
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Figure 1. Selected recovery results by model (2) with #> norm. Left: recovery result for a Two Half-Moon data with n = 1000, & = 20,
~v = 5. Middle: recovery result for an Unbalanced Gaussian data with n = 6500, £ = 10, v = 1. Right: recovery result for a subset of
MNIST with n = 1000, v = 1.
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Figure 2. Time comparison between SSNAL and AMA on both
Two Half-Moon and MNIST data with v € [0.2 : 0.2 : 10].

can see that the key step is to use the CG method to solve
(11) efficiently to get the Newton direction. According to
our complexity analysis in Section 3.5, the computational
cost for one step of CG update is O(d|E| + d|£]). By the
specific choice of &, \5 | should only grow slowly with n.
This low computational cost for the matrix-vector product in
our Newton-CG method is the key point behind why our al-
gorithm can be scalable and efficient. The numerical results
shown in this section also strongly support this argument.
In our experiments, we apply our algorithm on Half-Moon
data with n ranging from 100 to 20000. Comparing to
the numerical results reported in (Chi & Lange, 2015) and
(Panahi et al., 2017) with n < 500 and n < 600, respec-
tively, our results have convincingly demonstrated the scala-
bility of our SSNAL.

In our experiments, we set ¢ = 0.5, k = 10 (the number of
nearest neighbors). Then we solve (2) with vy € [0.4: 0.4 :
20]. After generating the clustering path, we compute the
average time for solving a single instance of (2) for each
problem scale. Another factor related to the scalability is
the number of neighbors k used in £ in (2). So, we also
show the performance of SSNAL with different values of
k. For each k € [5 : 5 : 50], we generate the clustering
path for the Two Half-Moon data with n = 2000. Then we
report the average time for solving a single instance of (2)
for each k. We summarize our numerical results in Figure
3. We can observe that the computation time grows almost
linearly with » and k.
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Figure 3. Numerical results to demonstrate the scalability of our
proposed algorithm SSNAL with respect to n and k.

5. Conclusion

In this paper, we proposed a highly efficient and scalable
semismooth Newton based augmented Lagrangian method
to solve the convex clustering model (2). To the best of
our knowledge, this is the first optimization algorithm for
convex clustering model which uses the second-order gen-
eralized Hessian information. Extensive numerical results
shown in the paper have demonstrated the scalability and su-
perior performance of our proposed algorithm SSNAL com-
paring to the state-of-the-art software CVXCLUSTR. The
convergence results for our algorithm are also provided. In
our future work, we plan to design a distributed and parallel
version of SSNAL with the aim to handle huge scale data
sets. From the modeling perspective, we will also work on
generalizing our algorithm to handle kernel based convex
clustering models.
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