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Abstract Due to the possible lack of primal-dual-type error bounds, it was not clear
whether the Karush–Kuhn–Tucker (KKT) residuals of the sequence generated by
the augmented Lagrangian method (ALM) for solving convex composite conic pro-
gramming (CCCP) problems converge superlinearly. In this paper, we resolve this
issue by establishing the R-superlinear convergence of the KKT residuals generated
by the ALM under only a mild quadratic growth condition on the dual of CCCP,
with easy-to-implement stopping criteria for the augmented Lagrangian subprob-
lems. This discovery may help to explain the good numerical performance of several
recently developed semismooth Newton-CG based ALM solvers for linear and convex
quadratic semidefinite programming.
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1 Introduction

Since the introduction of the augmented Lagrangian method (ALM) by Hestenes
[28] and Powell [42] in the late 1960s for solving equality constrained optimization
problems, the study on the ALM has grown into a fruitful subject in optimization, sup-
ported by significant theoretical developments over the past half-century; see, e.g., the
papers [11–13,31,41,55,56] and the monographs [7,25]. The research of the ALM is
advanced by its impressive numerical performance for various applications, including
optimal control, partial differential equations and game theory [4,6,23,39]. Recently,
the algorithm has also been successfully implemented in several efficient solvers for
large scale convex positive semidefinite programming (SDP) [36,59,60] and convex
composite matrix programming [10,33].

The present paper is motivated by our desire to deeply understand the numerical
success of the ALM in the aforementioned convex programming solvers. Notably, the
targeted problems of these solvers belong to a wide class of convex programming—
convex composite conic programming (CCCP), for which the objective function is
the sum of a nonsmooth term and a smooth term, and the constraints include linear
equations and convex cones. More specifically, a CCCP problem takes the form of

min f 0(x) := h(Ax) + 〈c, x〉 + p(x)
s.t. Bx ∈ b + Q,

(P)

where A : X → W and B : X → Y are linear maps, Q ⊆ Y is a closed convex
cone, c ∈ X and b ∈ Y are given data, p : X → (−∞,+∞] is a proper closed
convex function, h : W → (−∞,+∞] is a proper closed convex and essentially
smooth function, whose gradient is locally Lipschitz continuous on int (dom h), and
X, Y and W are three finite dimensional Euclidean spaces. In particular, when Q is
the cone of symmetric and positive semidefinite matrices, (P) reduces to a convex
SDP problem; when p is the matrix norm function, (P) reduces to a convex composite
matrix optimization problem.

Let σ > 0 be a given penalty parameter. The augmented Lagrangian function
associated with (P) is given by (cf. [52, Section 11.K] or [55])

Lσ (x, y) := f 0(x) + 1

2σ

(‖ΠQ◦ [y + σ(Bx − b)]‖2 − ‖y‖2), (x, y) ∈ X × Y,

where Q◦ ⊂ Y is the polar cone of Q, i.e., Q◦ = {y ∈ Y | 〈y, d〉 � 0, ∀ d ∈ Q},
and ΠQ◦(·) denotes the Euclidean projection onto Q◦. Given a sequence of positive
scalars σk ↑ σ∞ � +∞ and a starting point y0 ∈ Q◦, the (k + 1)th iteration of the
ALM is given by
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{
xk+1 ≈ argmin

{
fk(x) := Lσk (x, y

k)
}
,

yk+1 = ΠQ◦ [yk + σk(Bxk+1 − b)], k � 0.
(1)

An appealing feature of the ALM for solving (P) is its arbitrarily fast linear con-
vergence rate, a property termed by Powell in [42]. For the ALM applied to nonlinear
programming (NLP), the classical results state that the generated dual sequence con-
verges Q-linearly and the corresponding primal sequence converges R-linearly under
the second order sufficient condition (SOSC), the linear independence constraint qual-
ification and the strict complementarity; see, e.g., [7, Propositions 2.7 & 3.2]. These
assumptions automatically require the local uniqueness of both the local optimal solu-
tion to the NLP problem and the corresponding multiplier. Various attempts have been
made to relax these restrictive assumptions, such as in [12,13,22,31]. Among these
works, Fernández and Solodov [22] showed that with a properly chosen initial multi-
plier and a sufficiently large penalty parameter in the case of an NLP problem, both the
primal and dual sequences convergeQ-linearly locally under solely the SOSC assump-
tion. This nice result is made possible by the fact that the Karush–Kuhn–Tucker (KKT)
solution mapping associated with the NLP problem is upper Lipschitz continuous if
the SOSC is satisfied [18,32,34,38]. For convex NLP problems, the convergence rate
of the ALM can also be derived through its connection with the dual proximal point
algorithm (PPA) as championed by Rockafellar in [50]. Along this line, one can obtain
the Q-linear convergence rate of the dual sequence generated by the ALM under the
Lipschitz continuity of the dual solution mapping at the origin and certain stopping
criteria on the inexact computations of the augmented Lagrangian subproblems [50,
Proposition 3 & Theorem 2].

Despite the successes in the case of NLP, the aforementioned convergence rate
results cannot be applied to the ALM in CCCP solvers. There are three main com-
pelling reasons for this. Firstly, unlike the case of NLP, the Lipschitzian-like properties
of the KKT solution mappings are difficult to be satisfied for CCCP when the coneQ
is not a polyhedral set or the convex function p is not piecewise linear-quadratic. For
example, Bonnans and Shapiro constructed a convex quadratic SDP problem with a
strongly convex objective function and a unique multiplier failing to possess an upper
Lipschitz continuous KKT solution mapping [9, Example 4.54] (see also Example 1
in Sect. 2.2 for a similar situation). Thus, directly extending the results in [22] to
obtain the primal-dual convergence rate of the ALM for solving CCCP is not pos-
sible. Secondly, within the spirit of Rockafellar’s work in [50], only the asymptotic
Q-superlinear convergence rate of the dual sequence can be derived under the upper
Lipschitz continuity of the dual solution mapping at the origin [37]. However, the lack
of KKT residual information in this derived rate result poses a serious practical issue
since the solution qualities in reliable solvers are almost always measured by the KKT
residuals. Thirdly, the subproblems in the ALM are often solved approximately in a
CCCP solver. But the stopping criteria in [50], which involve the unknown optimal
values of the subproblems, are difficult to be executed unless the objective function
of the original problem is strongly convex. One plausible remedy for the latter two
deficiencies encountered in theALM is to instead adopt the proximalALM, or inRock-
afellar’s terminology, the proximal method of multipliers [50]. However, a moment’s
thought would reveal that this is impractical as the primal-dual convergence rate of
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the proximal ALM would require a Lipschitzian-like property of the KKT solution
mapping at the origin, which is too restrictive for CCCP as we have already mentioned
above.

Now we are facing a dilemma as on the one hand, if the ALM is applied to solve
CCCP, then only the Q-linear convergence of the dual sequence can be derived under
the upper Lipschitz continuity of the dual solution mapping at the origin while on
the other hand, if the proximal ALM is adopted, the assumption to ensure the linear
convergence rate is too restrictive to hold even for the casewhen the original problem is
strongly convex with a unique multiplier. This leads us to ask the following important
question: Is it possible for the KKT residuals of the iterates generated by the ALM for
solving CCCP to converge linearly without the Lipschitzian-like property of the KKT
solution mapping at the origin?

Before answering this question, we shall first conduct some numerical experiments
on the following convex least square SDP problem, which originates from [61] and
[17, Example 3].

Example 1 Consider the following SDP problem and its dual form:

min
x

1
2‖Ax − b‖2 + 〈x, I 〉

s.t. 〈E, x〉 � 1, x ∈ S
2+;

max
y,t

− 1
2‖y‖2 − 〈b, y〉 − t

s.t. A∗y + t E + I ∈ S
2+, t � 0,

where Ax = B1/2(x11, x22)T for all x ∈ S
2 with B =

(
3/2 −2
−2 3

)
, b =

B−1/2(5/2,−1)T , I is the 2 × 2 identity matrix and E is the 2 × 2 matrix of all
ones.

In Example 1, both the primal and the dual optimal solutions are unique, and the dual
SOSC holds, but the KKT solution mapping is not Lipschitz continuous at the origin
[17, Example 3]. We apply the ALM to the primal form, with the subproblems being
solved by the semismooth Newton method to the accuracy of 10−15. Figure 1 shows
the KKT residual norm of the iterates, which is the maximum of the primal feasibility,
dual feasibility and duality gap, against different choices of the penalty parameter σk .
One can see that the KKT residuals converge locally linearly. Specifically, when σk is
fixed at a given value for all k, the rate of reduction of the KKT residual norm is almost
a constant depending on the given value. On the other hand, when σk is dynamically
increased from one iteration to the next, the rate of reduction of the KKT residual
norm becomes smaller

The above numerical results shed some light on the possibility that the KKT resid-
uals of the iterates generated by the ALM for solving (P) could still converge linearly
without theLipschitz continuity of theKKTsolutionmapping at the origin. To establish
a theorem of this property constitutes a major part of the present paper. Consequently,
we fill the gap between the theoretical and practical performance of the ALM for
solving CCCP problems that has been missing so far. More specifically, our main
contributions can be summarized below.

1. Under the stopping criteria proposed by Rockafellar in [50], we establish the
R-linear convergence rate of the primal feasibility, complementarity and primal
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Fig. 1 The KKT residual norm of the sequence generated by the ALM for solving Example 1 with different
values of the penalty parameter σk

objective value under the quadratic growth condition on the dual problem. This
quadratic growth condition can be satisfied even if the targeted problem admits
multiple solutions and multipliers. The convergence rate becomes asymptotically
superlinear if the penalty parameter tends to infinity.

2. Under the Robinson constraint qualification (RCQ), we propose fairly easy-to-
implement stopping criteria for the inexact computations to the subproblems of
the ALM to ensure the global convergence. More importantly, we prove that the
KKT residuals of the iterates generated by the ALM converge R-linearly under
the quadratic growth condition on the dual problem. The convergence rate again
becomes asymptotically superlinear if the penalty parameter tends to infinity.

We shouldmention that it is not completely new to guarantee the global convergence
of the ALM for solving convex programming problems under implementable stopping
criteria for the ALM subproblems. For example, Eckstein and Silva [21] proposed
implementable relative stopping criteria for the augmented Lagrangian subproblems
to ensure the global convergence of the dual iterates for convex NLP; see also [2].
However, for the first time we prove, even with the subproblems being solved exactly,
that the ALM can enjoy the much desired R-linear (asymptotically R-superlinear)
convergence rate without the Lipschitzian-like property of the KKT solution mapping.
This result is new even for the convex NLP problems when the constraint functions are
convex quadratic, for which the constraint set can be represented by linear constraints
plus the second order cone constraints, thus being a special case of (P).

The remaining parts of this paper are organized as follows. In the next section, we
provide some preliminary results on the convergence rates of the ALM. In Sect. 3,
we address the issue that the Lipschitzian-like property of the KKT solution mapping,
with the presence of non-polyhedral set-valued mappings, is a much more restrictive
assumption than that for either the primal or the dual solution mapping or even both.
Section 4 is devoted to the study on the arbitrarily fast linear convergence rate of
the KKT residuals for the iterates generated by the ALM for solving CCCP. Easy-
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to-implement stopping criteria are also provided in this section under the RCQ. The
usefulness of the derived theoretical results are demonstrated for solving the convex
quadratic SDP problems in Sect. 5. Illustrative numerical experiments with real finan-
cial data are also conducted in this section. We end this paper with some concluding
discussions in Sect. 6.
Notation. We use U, V, W, X, Y and Z to denote finite dimensional real Euclidean
spaces, S

n to denote the space of all n × n symmetric matrices, and S
n+ to denote the

cone of all n × n symmetric positive semidefinite matrices. For any convex function
p : X → (−∞,+∞], we denote its effective domain as dom p := {x ∈ X |
p(x) < +∞}, its epigraph as epi p := {(x, t) ∈ X × R | p(x) � t}, its conjugate as
p∗(u) := supx∈X{〈x, u〉 − p(x)}, u ∈ X, and its proximal mapping as Proxp(x) :=
argminu∈X

{ 1
2‖u − x‖2 + p(u)

}
, x ∈ X. We will often use the Moreau identity

x = Proxp(x) + Proxp∗(x) for any x ∈ X (c.f. [47, Theorem 31.5]). Let D ⊆ X

be a convex set. Denote the indicator function over D by δD(·), i.e., for any x ∈ X,
δD(x) = 0 if x ∈ D, and δD(x) = +∞ if x /∈ D. We use cl (D) and ri (D) to denote
the closure and relative interior of D, respectively. We write the distance of x ∈ X

to D by dist(x, D) := infd∈D ‖d − x‖. For a given closed convex set D ⊆ X and
a given point x ∈ X, the Euclidean projection of x onto D is denoted by ΠD(x) :=
argmin{‖x − d‖ | d ∈ D}. For any x ∈ D, we use TD(x) to denote the tangent cone
of D at x and ND(x) to denote the normal cone of D at x . If D is a closed convex
cone, we use D◦ to denote the polar of D, i.e., D◦ := {x ∈ X | 〈x, d〉 � 0, ∀ d ∈ D}.
For any set-valued mapping Γ : U ⇒ V, we use gphΓ to denote the graph of Γ , i.e.,
gphΓ := {(u, v) ∈ U × V | v ∈ Γ (u)}. Let BU be the unit ball in U centered at the
origin. For any ū ∈ U and ε > 0, denote Bε(ū) := {u ∈ U | ‖u − ū‖ � ε}. We write
the domain of Γ as Dom Γ := {u ∈ U | Γ (u) �= ∅}.

2 Preliminary results on the convergence rates of the ALM

As mentioned in the introduction, the ALM can be taken as a dual application of
the PPA for solving convex optimization problems [50]. Thus, one can obtain the
convergence properties of the dual sequence generated by theALM through the known
results of the PPA. As a preparation for our subsequent study, we will review some
known results and make necessary extensions along this line in this section.

2.1 The convergence rates of the PPA and ALM

Let T : Z ⇒ Z be a maximal monotone operator. Our aim is to find z ∈ Z such that

0 ∈ T (z). (2)
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Given a sequence of positive scalars σk ↑ σ∞ � ∞1 and a starting point z0 ∈ Z, the
(k + 1)th iteration of the PPA takes the form of

zk+1 ≈ Pk(z
k) := (I + σkT )−1(zk), ∀ k � 0, (3)

where I is the identity operator in Z. In [51], Rockafellar suggested the following
criteria for computing zk+1 approximately to ensure the global convergence and the
convergence rate of the PPA:

(A) ‖Pk(zk) − zk+1‖ � εk, εk � 0,
∞∑

k=1

εk < ∞,

(B) ‖Pk(zk) − zk+1‖ � ηk‖zk+1 − zk‖, 0 � ηk < 1,
∞∑

k=1

ηk < ∞.

Note that in general neither (A) nor (B) is implementable since Pk(zk) is unavailable.
In reality, one needs more constructive criteria for practical implementations, which
we shall address later.

In Rockafellar’s original work [51], the asymptotic Q-superlinear convergence rate
of {zk} is established under the Lipschitz continuity of T−1 with respect to the origin.
Recall that a set-valued mapping Γ : U → V is called Lipschitz continuous2 with
respect to ū ∈ U if Γ (ū) = {v̄} and there exist positive constants κ and ε such that

‖v − v̄‖ � κ‖u − ū‖, ∀ v ∈ Γ (u), ∀ u ∈ Bε(ū).

Since the uniqueness assumption on the solution set to problem (2) may exclude many
interesting instances, Luque in [37] made an important extension to Rockafellar’s
work by studying the linear convergence of the PPA under the following much more
relaxed condition: there exist positive constants ε and κ such that

dist (z, T−1(0)) � κ‖u‖, ∀ z ∈ T−1(u), ∀ u ∈ Bε(0).

In fact, this condition is exactly the so-called local upper Lipschitz continuity of
T−1 at the origin that was first coined by Robinson in [44]. A fundamental stability
result of Robinson [45] states that every piecewise polyhedral mapping is locally
upper Lipschitz continuous. Moreover, one key result in Sun’s PhD thesis [57] says
that a closed proper convex function is piecewise linear-quadratic if and only if its
subdifferential is piecewise polyhedral (see also [52, Propositions 12.30 & 11.14]).
When T−1 is not piecewise polyhedral, such as T−1 being the solution mapping
of CCCP with Q being non-polyhedral or p not being piecewise linear-quadratic, a
weaker assumption on T−1 may be needed for studying the convergence rate of the
PPA. This leads us to focus on the calmness property. Recall that a set-valued mapping

1 For the convergence of the PPA, one does not need the parameters to be increasing as long as σk is
bounded away from zero.
2 The Lipschitz continuity of a set-valued mapping may refer to other properties elsewhere, such as in [52,
Definition 9.26].
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Γ : U ⇒ V is said to be calm at ū ∈ U for v̄ ∈ V (with modulus κ) (c.f. [19, 3.8(3H)])
if (ū, v̄) ∈ gphΓ and there exist positive constants ε and δ such that

Γ (u) ∩ Bδ(v̄) ⊆ Γ (ū) + κ‖u − ū‖BV, ∀ u ∈ Bε(ū).

In the following proposition, we summarize and extend some useful results for the
PPA developed in [37,51]. Among them, part (a) is from [51, Proposition 1(a)] and
part (b) comes from [51, (2.11)]. The convergence rate result in part (c), whose proof is
given in the appendix, is an extension of [51, Theorem 2] and [37, Theorem 2.1]. Note
that for the case where the subproblems of the PPA are solved exactly, this relaxation
has also been discussed by Leventhal in [35].

Proposition 1 Assume that T−1(0) is nonempty. Let {zk} be an infinite sequence
generated by the PPA in (3) under criterion (A). Then the following three statements
hold.

(a) [z − Pk(z)]/σk ∈ T (Pk(z)) for any z ∈ Z and k � 0.
(b) For any z̄ ∈ T−1(0), it holds that

‖Pk(zk) − z̄‖2 � ‖zk − z̄‖2 − ‖Pk(zk) − zk‖2, ∀ k � 0.

(c) The whole sequence {zk} converges to some z∞ ∈ T−1(0). If in the PPA, the
stopping criterion (B) is also employed and the mapping T−1 is calm at the origin
for z∞ with modulus κ , then there exists k̄ � 0 such that for all k � k̄,

dist (zk+1, T−1(0)) � μk dist (z
k, T−1(0)),

where μk :=
[
ηk + (ηk + 1)κ/

√
κ2 + σ 2

k

]
/(1 − ηk) → μ∞ := κ/

√
κ2 + σ 2∞

(μ∞ = 0 if σ∞ = +∞).

Let us now move on to the ALM. To proceed, we first introduce some notation. Let
l : X × Y → [−∞,+∞] be the Lagrangian function of (P) in the extended form:

l(x, y) :=
⎧
⎨

⎩

f 0(x) + 〈y,Bx − b〉 x ∈ dom f 0, y ∈ Q◦,
−∞ x ∈ dom f 0, y /∈ Q◦,
+∞ x /∈ dom f 0.

The Lagrangian dual of (P) takes the form of

max
y∈Y

{
g0(y) := inf

x∈X l(x, y)
}

s.t. y ∈ Q◦. (D)

The essential objective functions of (P) and (D) are given by

f (x) := sup
y∈Y

l(x, y) =
{
f 0(x) Bx ∈ b + Q,

+∞ otherwise;

g(y) := inf
x∈X l(x, y) =

{
g0(y) y ∈ Q◦,
−∞ otherwise.
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Denote the mappings Tl : X × Y ⇒ X × Y, T f : X ⇒ X and Tg : Y ⇒ Y by

Tl(x, y) := {
(u, v) ∈ X × Y | (u,−v) ∈ ∂l(x, y)

}
, (x, y) ∈ X × Y, T f := ∂ f,

Tg := −∂g, (4)

where ∂l is the subdifferential of the convex-concave function l and ∂g is the subdif-
ferential of the concave function g; see [47, Sections 30 & 35] for the definitions of
such subdifferentials. All of the three mappings Tl , T f and Tg are maximal monotone
operators under the settings of (P) [47, Corollaries 37.5.2 & 31.5.2]. As explained in
[50], the inverse of these mappings can be taken as the solution mappings of the corre-
sponding perturbed problems. Specifically, consider the following linearly perturbed
form of problem (P):

min f 0(x) − 〈x, u〉
s.t. Bx + v ∈ b + Q,

(P(u, v))

where (u, v) ∈ X × Y are perturbation parameters. Then

⎧
⎨

⎩

T−1
l (u, v) = set of all KKT points to (P(u, v)),

T−1
f (u) = set of all optimal solutions to (P(u, 0)),

T−1
g (v) = set of all optimal solutions to (D(0, v)),

where (D(u, v)) is the ordinary dual of (P(u, v)) for any (u, v) ∈ X × Y. Thus, we
call T−1

l the KKT solution mapping, T−1
f the primal solution mapping, and T−1

g the
dual solution mapping, all with respect to (P).

For the ALM, the following criteria on the approximate computation of xk+1 in (1)
are considered by Rockafellar in [50]:

(A′) fk(x
k+1) − inf fk � ε2k/2σk, εk � 0,

∞∑

k=0

εk < ∞,

(B ′) fk(x
k+1) − inf fk � (η2k/2σk)‖yk+1 − yk‖2, 0 � ηk < 1,

∞∑

k=0

ηk < ∞,

(B̃ ) dist (0, ∂ fk(x
k+1)) � (η′

k/σk)‖yk+1 − yk‖, 0 � η′
k → 0.

The connection between the ALM applied to (P) and the PPA applied to (D) is
revealed in the next lemma, where part (a) is taken from [50, Proposition 6] and part
(b) is taken from [50, (4.21)].

Lemma 1 For any k � 0 and xk+1 ∈ X, let Pk = (I + σkTg)−1 and yk+1 =
ΠQ◦ [yk + σk(Bxk+1 − b)]. Then the following inequalities hold:

(a) (1/2σk)‖yk+1 − Pk(yk)‖2 � fk(xk+1) − inf fk .
(b) dist (0, T−1

l (xk+1, yk+1)) � [dist2(0, ∂ fk(xk+1)) + (1/σ 2
k )‖yk+1 − yk‖2]1/2.
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It can be seen from Lemma 1 that, when using the ALM for (P) under criteria (A′)
and (B ′), we are, in effect, executing the PPA for Tg = −∂g under criteria (A) and (B).
This fact leads to the following two propositions regarding the global convergence and
local convergence rate of the ALM.

Proposition 2 Assume that T−1
g (0) is nonempty. Let {(xk, yk)} be an infinite sequence

generated by the ALM for (P) under criterion (A′). Then, the whole sequence {yk}
converges to some y∞ ∈ T−1

g (0), and the sequence {xk} satisfies for all k � 0,

‖Bxk+1 − b − ΠQ[Bxk+1 − b + yk/σ k]‖ = (1/σk)‖yk+1 − yk‖ → 0, (5a)

f 0(xk+1) − inf (P) � fk(x
k+1) − inf fk + (1/2σk)(‖yk‖2 − ‖yk+1‖2). (5b)

Moreover, if (P) admits a nonempty and bounded solution set, then the sequence {xk}
is also bounded, and all of its accumulation points are optimal solutions to (P).

The above proposition is essentially adopted from [50, Theorem 4]. Note that the
inequalities (5a) and (5b) are slightly different from [50, Theorem 4 (4.13) & (4.14)].
We directly take the inequalities (4.4) and (4.18) in the proof of [50, Theorem 4] to
serve the purpose of our later developments.

Proposition 3 Let {(xk, yk)} be an infinite sequence generated by the ALM for (P)
under criterion (A′), for which {yk} converges to y∞.

(a) If T−1
g is calm at the origin for y∞ with modulus κg, then under criterion (B ′),

there exists k̄ � 0 such that for all k � k̄,

dist (yk+1, T−1
g (0)) � μk dist (y

k, T−1
g (0)), (6)

where μk :=
[
ηk + (ηk + 1)κg/

√
κ2
g + σ 2

k

]
/(1 − ηk) → μ∞ := κg/

√
κ2
g + σ 2∞

(μ∞ = 0 if σ∞ = +∞).
(b) If in addition to (B ′) and the calmness condition on T−1

g , one has criterion (B̃)

and T−1
l is upper Lipschitz continuous at the origin with modulus κl , then there

exists k̃ � 0 such that for all k � k̃,

dist (xk+1, T−1
f (0)) � μ′

k‖yk+1 − yk‖,

where μ′
k := (κl/σk)(1 + η′2

k ) → μ′∞ := κl/σ∞ (μ′∞ = 0 if σ∞ = +∞).

Part (a) of the above proposition is a consequence of criteria (A′) and (B ′), Proposi-
tion 1(c) andLemma1(a); part (b),whose proof is given in the appendix, is an extension
of [50, Theorem 5] by relaxing the Lipschitz continuity of T−1

l at the origin, which
is too restrictive in our context. Proposition 3 provides the asymptotic Q-superlinear
convergence rate of {yk} under the calmness of the dual solution mapping T−1

g at the
origin. In fact, by applying Lemma 3 that will be given in Sect. 4, one can also derive
the asymptotic R-superlinear rate of {xk} under the upper Lipschitz continuity of T−1

l .
However, the assumption on the upper Lipschitz continuity of T−1

l is likely to fail for
CCCP considered in this paper. This phenomenon can be seen clearly later in Sect. 3.
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2.2 The quadratic growth condition of CCCP

Proposition 3 says that the asymptotic Q-superlinear convergence of the dual sequence
generated by theALMholds under the calmness assumption of T−1

g at the origin. Then
onemaywonder towhat extent this condition is satisfied for CCCP, especiallywhen Tg
is a non-polyhedral set-valued mapping. In this subsection, we attempt to characterize
the calmness of the dual solution mapping by relating it to the known results in the
existing literature.

Since the function h is assumed to be essentially smooth, it is known from [47,
Theorem 26.1] that ∂h(x) is nonempty if and only if x ∈ int (dom h), where in fact
∂h(x) consists of ∇h(x) alone. Thus, the KKT optimality condition of (P) can be
written in the form of

0 ∈ A∗∇h(Ax) + c + ∂p(x) + B∗y, y ∈ NQ(Bx − b), (x, y) ∈ X × Y. (7)

Throughout this paper, we always assume that the KKT system (7) has at least one
solution. Denote SOLP and SOLD as the sets of all the optimal solutions to (P) and
(D), respectively. Then x̄ ∈ SOLP and ȳ ∈ SOLD if and only if (x̄, ȳ) solves (7)
[47, Theorem 28.3]. Denote FP and FD as the set of all the primal and dual feasible
solutions, i.e.,

FP := {x ∈ X | Bx ∈ b + Q, x ∈ dom f 0}, FD := {y ∈ Y | y ∈ dom (−g0) ∩ Q◦}.

The quadratic growth condition for (P) at x̄ ∈ SOLP is said to hold if there exist
positive constants κ1 > 0 and ε1 > 0 such that

f 0(x) � inf (P) + κ1 dist
2(x,SOLP), ∀ x ∈ FP ∩ Bε1(x̄). (8)

The quadratic growth condition for (D) at ȳ ∈ SOLD is said to hold if there exist
positive constants κ2 > 0 and ε2 > 0 such that

− g0(y) � − sup (D) + κ2 dist
2(y,SOLD), ∀ y ∈ FD ∩ Bε2(ȳ). (9)

The constants κ1 and κ2 are called the quadratic growth modulus for (P) at x̄ and for
(D) at ȳ, respectively. It can be derived from [3, Theorem 3.3] that the calmness of
the dual solution mapping at the origin for a dual optimal solution is equivalent to
the quadratic growth condition at that optimal solution. This is made precise in the
proposition below.

Proposition 4 Assume that SOLD is nonempty. Let ȳ ∈ SOLD. The following state-
ments are equivalent to each other:

(i) The mapping T−1
g is calm at the origin for ȳ.

(ii) The quadratic growth condition (9) for (D) holds at ȳ.

More specifically, if (9) holds with quadratic growth modulus κ , then T−1
g is calm at

the origin for ȳ with modulus 1/κ; conversely, if T−1
g is calm at the origin for ȳ with

modulus κ ′, then (9) holds for any κ ∈ (0, 1/(4κ ′)).
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Proof By [3, Theorem 3.3] and the fact that g(y) = g0(y) for any y ∈ FD, the
quadratic growth condition for (D) holds at ȳ ∈ SOLD if and only if −∂g = ∂(−g)
is metrically subregular (see [19, 3.8(3H)] for its definition) at ȳ for the origin. The
latter property is the same as the calmness of the mapping T−1

g = (−∂g)−1 at the
origin for ȳ with the same modulus, as stated in [19, Theorem 3H.3]. ��

The above proposition allows us to characterize the calmness of the mapping T−1
g

of CCCP via the dual quadratic growth conditions studied in the recent work [14].
However, the lack of an explicit expression of the dual objective function makes it
difficult to apply the known results directly. To see this, let the function φ : X →
(−∞,+∞] be given by φ(x) := h(Ax)+ p(x) for x ∈ X. Direct computations show
that

g0(y) = −φ∗(−B∗y − c) − 〈b, y〉, y ∈ Y,

where the conjugate function φ∗ takes the form of

φ∗(v) = inf
w∈W {h∗(w) + p∗(v − A∗w)}, v ∈ X.

To alleviate the aforementioned difficulty, we introduce the following problem:

max
(w,y,s)∈W×Y×X

g0(w, y, s) := −h∗(w) − 〈b, y〉 − p∗(s)

s.t. A∗w + B∗y + s + c = 0, y ∈ Q◦.
(D2)

Note that we used the same notation g0 to denote the dual objective function of (D2)
but there is no danger of confusion since it involves three variables (w, y, s). Similarly
to the notation SOLD, we use SOLD2 to denote the set of all optimal solutions to (D2).
Also denote by FD2 the set of all feasible solutions to (D2):

FD2 :={(w, y, s) ∈ dom h∗ × Y×X | A∗w+B∗y + s + c = 0, y∈Q◦, s∈dom p∗}.

In fact, theKKToptimality condition in terms of (D2) can bewritten, for (w, y, s, x) ∈
W × Y × X × X, as

Ax ∈ ∂h∗(w), Bx − b ∈ NQ◦(y), x ∈ ∂p∗(s), A∗w +B∗y + s + c = 0. (10)

The quadratic growth condition for (D2) at (w̄, ȳ, s̄) ∈ SOLD2 is said to hold if there
exist positive constants κ3 > 0 and ε3 > 0 such that

− g0(w, y, s) � − sup (D2) + κ3 dist
2((w, y, s),SOLD2),

∀ (w, y, s) ∈ FD2 ∩ Bε3(w̄, ȳ, s̄). (11)

It is known from [47, Theorem26.3] that if h is essentially smooth, then its conjugate
function h∗ is essentially strictly convex, implying that the vector w is unique over
SOLD2. For notational simplicity, we write this vector as w̄. In the following lemma,
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we establish the equivalence between the quadratic growth conditions for problems
(D) and (D2), whose proof can be found in the appendix.

Lemma 2 Assume that h∗ is locally strongly convex on dom h∗. Then the quadratic
growth condition for (D) holds at ȳ ∈ SOLD if and only if the quadratic growth
condition for (D2) holds at (w̄, ȳ,−A∗w̄ − B∗ ȳ − c) ∈ SOLD2.

Equipped with the preparations in Proposition 4 and Lemma 2, one can obtain
sufficient conditions for the calmness of the dual solution mapping associated with a
rich class of non-polyhedral CCCP via the recent results established in [14]. In order
not to deviate too much from the main purpose of this paper, we would not repeat
those results here. Instead, we take convex quadratic SDP problems as an example to
illustrate these sufficient conditions in Sect. 5.

3 The Lipschitzian-like property of the KKT solution mapping can
easily fail

Asmentioned in the previous section, fromProposition 3 andLemma3 (in Sect. 4), one
can derive that the primal sequence generated by the ALM converges asymptotically
R-superlinearly if the KKT solution mapping T−1

l is assumed to be upper Lipschitz
continuous at the origin. However, this is a restrictive assumption for non-polyhedral
CCCP. As what have already been indicated in Example 1, even if the dual SOSC
holds and a unique KKT point is admitted, the mapping T−1

l can still fail to be
upper Lipschitz continuous at the origin. This is completely different from the case of
NLP, for which the SOSC implies the upper Lipschitz continuity of the KKT solution
mapping at the origin, see, e.g., [18,32,34,38]. In this section, we shall show that even
a weaker assumption on CCCP—the calmness of the KKT solution mapping, can still
be difficult to be satisfied.

In what follows, we shall first consider the case that the KKT system (7) admits
a unique solution, in which case the calmness property coincides with the isolated
calmness property. Recall that a set-valued mapping Γ : U ⇒ V is said to be isolated
calm at ū ∈ U for v̄ ∈ V (c.f. [19, Section 3.9(3I)]) if (ū, v̄) ∈ gphΓ and there exist
positive constants κ , ε and δ such that

‖v − v̄‖ � κ‖u − ū‖, ∀ v ∈ Γ (u) ∩ Bδ(v̄), ∀ u ∈ Bε(ū). (12)

If in addition, the mapping Γ is also locally nonempty-valued, i.e., Γ (u)∩Bδ(v̄) �= ∅

for any u ∈ Bε(ū), the set-valued mapping Γ is called robustly isolated calm at ū for
v̄ [17].

Based on the recent work in [17, Theorem 24], one can obtain the following char-
acterization on the robust isolated calmness of the KKT solution mapping at the origin
when the closed convex coneQ is C2-cone reducible and the function p is the indicator
function over a C2-cone reducible set ( [9, Definition 3.135]). It is worth mentioning
that the class of C2-cone reducible sets is rich, and it includes polyhedral convex sets,
second order cones, the cones of symmetric and positive semidefinite matrices, the
epigraph of the nuclear norm, and their Cartesian products [16,54].
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Proposition 5 Assume that the cone Q is C2-cone reducible and the function p in
(P) is δK(·), the indicator function over a C2-cone reducible set K ⊆ X. Let (x̄, ȳ)
be a KKT solution of (P). Then the KKT solution mapping T−1

l is isolated calm at
the origin for (x̄, ȳ) if and only if it is robustly isolated calm at the origin for (x̄, ȳ),
which is also equivalent to have both the SOSC for (P) at x̄ and the following strict
Robinson constraint qualification for (P) at x̄ for ȳ:

(
B
I

)
X +

(
TQ(Bx̄ − b) ∩ ȳ⊥

TK(x̄) ∩ (A∗∇h(Ax̄) + B∗ ȳ + c)⊥
)

=
(

Y

X

)
.

One may refer to [15] for an analogous result to Proposition 5 for the case when
the function p in (P) is the nuclear norm function defined over X = R

m×n andQ is a
convex polyhedral cone.

In fact, we can also characterize the Lipschitz continuity of the KKT solution map-
ping based on Proposition 5. The key factor to this characterization is the equivalence
between the Lipschitz continuity and the robust isolated calmness of any maximal
monotone mapping, which is given by the proposition below.

Proposition 6 Let Γ : U ⇒ U be a maximal monotone mapping. For any (ū, v̄) ∈
gphΓ , the mapping Γ is Lipschitz continuous at ū if and only if it is robustly isolated
calm at ū for v̄.

Proof First let us assume that Γ is robustly isolated calm at ū for v̄. To prove the
Lipschitz continuity of Γ at ū, it suffices to show that Γ is locally nonempty-valued
at ū for v̄. This can be obtained by a result of Rockafellar that ū ∈ int (Dom Γ ) if Γ

is locally uniformly bounded [48, Thoerem 1], and the latter property is guaranteed
by the definition of the Lipschitz continuity of Γ at ū.

Nowwe prove the reverse implication. The assumed isolated calmness ofΓ at ū for
v̄ implies the existence of positive constants ε, δ and κ such that (12) holds. Without
loss of generality, let us assume that ε < δ/κ . Suppose on the contrary that Γ is not
Lipschitz continuous at ū. By shrinking ε if necessary, we may choose a sequence
{(u j , v j )} j�1 satisfying

u j ∈ Bε(ū)\{ū}, v j ∈ Γ (u j ), ‖v j − v̄‖ � t j‖u j − ū‖ for some t j → ∞. (13)

We may also assume that t j > κ for any j � 1. The inequalities in (12) and (13)
together imply that v j /∈ Bδ(v̄) for any j � 1, or equivalently, ‖v j−v̄‖ > δ. Consider a
fixed but arbitrary index j � 1. SinceΓ is assumed to be locally nonempty-valued, we
know that there exists ṽ j ∈ Γ (u j )∩Bδ(v̄). Denote the constant γ j := 1

2 (κ‖u j−ū‖+δ)

and the function ξ j : R → R as ξ j (λ) = ‖λv j + (1 − λ)ṽ j − v̄‖ for λ ∈ R.
Note that γ j ∈ (κ‖u j − ū‖, δ) since u j ∈ Bε(ū) � Bδ/κ (ū). Obviously ξ j (·) is
continuous on R with ξ j (0) < γ j and ξ j (1) > γ j . Then by the intermediate value
theorem, we get the existence of λ j ∈ (0, 1) for which ξ j (λ j ) = γ j . Since Γ is a
maximal monotone mapping, it is easy to check that λ jv

j + (1 − λ j )ṽ
j ∈ Γ (u j ).

Then λ jv
j + (1−λ j )ṽ

j ∈ Γ (u j )∩Bδ(v̄) since ξ j (λ j ) = γ j < δ.On the other hand,

‖λ jv
j + (1 − λ j )ṽ

j − v̄‖ = ξ j (λ j ) = γ j > κ‖u j − ū‖.
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Thus,we get a contradiction to (12),which implies thatΓ must beLipschitz continuous
at ū. ��

Propositions 5 and 6 reveal the reason behind the failure of the Lipschitz continuity
of T−1

l at the origin in Example 1, that is, the lack of the strict Robinson constraint
qualification. Different from the case of NLP, there is a gap between such a constraint
qualification (known as the strict Mangasarian-Fromovitz constraint qualification in
the case of NLP) and the uniqueness of the multiplier.

Now we move on to the case that the KKT system (7) admits multiple solutions.
As indicated in [14, Theorem 16 & Proposition 17], to guarantee the calmness of
T−1
g at the origin for a dual optimal solution, it suffices for (P) to possess a partially

strictly complementarity solution with respect to the non-polyhedral complementarity
system. However, to ensure the calmness of the mapping T−1

l at the origin for a KKT
point is much harder, as can be seen from the following example.

Example 2 Consider the following SDP problem and its dual:

min
x,z∈S2

|x11| + δ
S
2+(z)

s.t. x12 + x21 + 2x22 = 2, x − z = 0,

max
y∈R,s∈S2

2y − δ
S
2−(−s)

s.t. y + s12 = 0, 2y + s22 = 0, |s11| � 1.

It is easy to check that

SOLP =
{
x̄ =

(
0 0
0 1

)
, z̄ =

(
0 0
0 1

)}
,

SOLD =
{
ȳ = 0, s̄ =

(
s̄11 0
0 0

) ∣∣∣∣ 0 � s̄11 � 1

}
.

For any (x̄, z̄, ȳ, s̄) ∈ SOLP × SOLD with s̄11 ∈ (0, 1], it holds that rank(z̄) +
rank(s̄) = 2, or equivalently, s̄ ∈ ri(∂δ

S
2+(z̄)). Hence, the primal solution mapping

T−1
f is calm at the origin for (x̄, z̄) and the dual solution mapping T−1

g is calm at
the origin for any (ȳ, ŝ) ∈ SOLD (ŝ may be different from s̄) [14, Theorem 16 &
Proposition 17]. However, the KKT solution mapping T−1

l fails to be calm at the
origin for (x̄, z̄, ȳ, s̄′) ∈ T−1

l (0) with s̄′
11 = 0. This can be seen as follows: for any

ε ∈ (0, 1
2 ), consider the perturbation parameters u(ε) :=

((
ε ε

ε 2ε

)
, −

(
ε ε

ε 2ε

))

and v(ε) :=
(
0 ,

(
ε 0
0 0

))
. Then one can show from the KKT optimality condition

that

(x(ε), z(ε), y(ε), s(ε)) :=
((

0 −√
ε

−√
ε 1 + √

ε

)
,

(
ε −√

ε

−√
ε 1 + √

ε

)
, 0 , −

(
ε ε

ε 2ε

))

∈ T−1
l (u(ε), v(ε)).

Also one can readily verify that

‖(u(ε), v(ε))‖ = √
15ε, dist

(
(x(ε), z(ε), y(ε), s(ε)) , T−1

l (0)
)

�
√

ε.
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Thus, there cannot exist positive constants κ and δ such that

dist((x, z, y, s), T−1
l (0)) � κ‖(u, v)‖, ∀ (x, z, y, s) ∈ T−1

l (u, v) ∩ Bδ(x̄, s̄
′),

showing that T−1
l cannot be calm at the origin for (x̄, s̄′) ∈ T−1

l (0) with s̄′
11 = 0.

In addition to the existence of the partially strictly complementarity solution as well
as the calmness of T−1

f and T−1
g at the origin for the corresponding optimal solutions,

there are other nice properties of Example 2: the primal solution set is a singleton; the
dual solution set is bounded; the dual SOSC holds at any s̄ with s̄11 > 0. Given these
facts, the mapping T−1

l still fails to possess the calmness property at the origin for a
KKT point. Therefore, additional conditionsmust be imposed in order to guarantee the
Lipschitz continuity and calmness of T−1

l at the origin for the non-polyhedral CCCP.
We shall end this section with the following remarks. Though the uniqueness of the

solution andmultiplier, strict complementarity, SOSC, and constraint nondegeneracy3

are all generic properties for many structured conic programming problems, including
the linear and nonlinear SDP [1,20,40,53], some of these properties often fail to hold
for problems arising from various interesting applications. In general, the quadratic
growth condition for (P)/(D) is muchweaker than the Lipschitz continuity/calmness of
the KKT solution mapping at the origin. While the former condition is satisfied under
either the SOSC for (P)/(D) or the existence of a partially strictly complementarity
solution [14, Theorem 2.5 & Theorem 3.12], the latter may fail even if both the
quadratic growth conditions for (P) and (D) hold.

4 The R-superlinear convergence of the KKT residuals

In this section, we shall derive the asymptotic R-superlinear convergence of the KKT
residuals on the sequence generated by the ALM for solving (P) under the quadratic
growth condition for (D). As explained in Sect. 2.2, this quadratic growth condition
is fairly mild for CCCP. Our approach is still within the spirit of Rockafellar’s work
in [50] in that the ALM is an application of the PPA applied to the dual problem.

Before proceeding, we consider the following three assumptions.

Assumption 1 The domain of h∗ is an open convex set and h∗ is continuously dif-
ferentiable on dom h∗ with a globally Lipschitz continuous gradient whose Lipschitz
constant is λ∇h∗ .

Assumption 2 (a) The constraint Bx ∈ b + Q takes the form of

(
B1
B2

)
x =

(
b1
b2

)
+
(
Q1
Q2

)
(in compatible sizes),

whereQ1 ⊆ Y1 is a polyhedral cone andQ2 ⊆ Y2 is a non-polyhedral cone with
nonempty interiors.

3 For NLP, the constraint nondegeneracy coincides with the linear independence constraint qualification
[46].
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(b) The function p is split into p(x) = p1(x1) + p2(x2) for x = (x1, x2) ∈ X1 × X2,
where p1 : X1 → (−∞,+∞] is a proper closed convex polyhedral function and
p2 : X2 → (−∞,+∞] is a proper closed convex non-polyhedral function whose
domain is a closed convex set with a nonempty interior. Moreover, p is globally
Lipschitz continuous on dom p with the Lipschitz constant λp and p∗ is globally
Lipschitz continuous on dom p∗ with the Lipschitz constant λp∗ .

Assumption 3 The set SOLD2 is nonempty and the following Robinson constraint
qualification (RCQ) of (D2) holds at some (w̄, ȳ, s̄) ∈ SOLD2 (c.f. [9, Section 3.4.1]):

0 ∈ int

⎧
⎨

⎩

⎛

⎝
−c
ȳ
s̄

⎞

⎠+
⎛

⎝
A∗ B∗ 0
0 IY 0
0 0 IX

⎞

⎠

⎛

⎝
W

Y

X

⎞

⎠−
⎛

⎝
{0}
Q◦

dom p∗

⎞

⎠

⎫
⎬

⎭
,

where IY and IX are the identity operators in Y and X, respectively.

Many commonly used functions h and p for CCCP satisfy Assumptions 1 and 2
, such as h being any convex quadratic function and p being the indicator function
of a closed convex set or any norm function. When SOLD2 �= ∅, Assumption 3 is
equivalent to the Mangasarian-Fromovitz constraint qualification in the context of
NLP. It is known that under Assumptions 1–3, the optimal solution set SOLP to the
primal problem is nonempty and bounded [9, Theorem 3.9].

In the rest of this section, we shall derive the convergence rate of the KKT residuals
for the ALM applied to (P). The following property is useful for developing our main
results.

Lemma 3 Let {(xk, yk)} be a sequence generated by the ALM in (1) under criterion
(B ′). Then for all k � 0, it holds that

‖yk+1 − yk‖ � (1 − ηk)
−1dist(yk,SOLD).

Proof By taking T = Tg , we know from Proposition 1(b) that for any ȳ ∈ SOLD,

‖yk − Pk(y
k)‖ � ‖yk − ȳ‖, ∀ k � 0.

Hence, ‖yk − Pk(yk)‖ � dist(yk,SOLD) for any k � 0. Therefore, we have for all
k � 0 that

‖yk+1 − yk‖ � ‖yk − Pk(yk)‖ + ‖Pk(yk) − yk+1‖
� dist(yk,SOLD) + (2σk( fk(xk+1) − inf fk))1/2

� dist(yk,SOLD) + ηk‖yk+1 − yk‖,

where the second term in the second inequality comes from Lemma 1(a), and the third
inequality follows from criterion (B ′). Thus, the conclusion of this lemma follows. ��

The following theorem provides the Q-linear convergence of {yk} and the R-linear
convergence of the primal feasibility, complementarity and primal objective value.
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Theorem 1 Let {(xk, yk)} be an infinite sequence generated by the ALM under crite-
rion (A′). Then, the sequence {yk} converges to some y∞ ∈ SOLD. If criterion (B ′)
is also executed in the ALM and the quadratic growth condition (9) holds at y∞ with
modulus κg, then there exists k̄ � 0 such that for all k � k̄,

dist (yk+1,SOLD) � μk dist (y
k,SOLD), (14a)

‖ΠQ◦(Bxk+1 − b)‖ � μ′
k dist (y

k,SOLD), (14b)

|〈yk+1,Bxk+1 − b〉| � μ′′
k dist (y

k,SOLD), (14c)

f 0(xk+1) − inf (P) � μ′′′
k dist (yk,SOLD), (14d)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μk :=
[
ηk + (ηk + 1)/

√
1 + σ 2

k κ2
g

]
/(1 − ηk) → μ∞ := 1/

√
1 + σ 2∞κ2

g ,

μ′
k := 1/[(1 − ηk)σk] → μ′∞ := 1/σ∞,

μ′′
k := ‖yk+1‖/[(1 − ηk)σk] → μ′′∞ := ‖y∞‖/σ∞,

μ′′′
k := [

η2k‖yk+1 − yk‖ + ‖yk+1‖ + ‖yk‖] /[2(1 − ηk)σk] → μ′′′∞ := ‖y∞‖/σ∞.

Moreover, μ∞ = μ′∞ = μ′′∞ = μ′′′∞ = 0 if σ∞ = +∞.

Proof The statements on the global convergence just follow from Proposition 2. Next,
we prove the results on the rates of convergence.

From Proposition 4 we know that the mapping T−1
g is calm at the origin for y∞

with modulus 1/κg if the quadratic growth condition (9) holds at y∞ with modulus
κg . Hence, the inequality (14a) is a consequence of Proposition 3(a). It follows from
the ALM updating formula yk+1 = ΠQ◦ [yk + σk(Bxk+1 − b)] for all k � 0 that

Bxk+1 − b − (1/σk)(y
k+1 − yk) = (1/σk)ΠQ[yk + σk(Bxk+1 − b)] ∈ Q,

which, implies that for all k � 0,

‖ΠQ◦(Bxk+1 − b)‖ = dist (Bxk+1 − b,Q)

� ‖Bxk+1 − b − [Bxk+1 − b − (1/σk)(yk+1 − yk)]‖ = (1/σk)‖yk+1 − yk‖

and

|〈yk+1,Bxk+1 − b〉| = |〈yk+1, (1/σk)(ΠQ[yk + σk(Bxk+1 − b)] + yk+1 − yk)〉|
� (1/σk)‖yk+1‖‖yk+1 − yk‖.

Then the inequalities (14b) and (14c) can be established in view of Lemma 3. Finally,
the inequality (14d) follows from (5b) in Proposition 2, criterion (B ′) and Lemma 3.
This completes the proof of the theorem. ��

Theorem1provides fairly general linear convergence rates for theALMwith criteria
(A′) and (B ′). The rates become asymptotically superlinear if σ∞ = +∞. Note that,
however, it is impractical to execute both (A′) and (B ′) numerically since the values of
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inf fk are not known in general. To circumvent this hurdle, we shall propose verifiable
surrogates of criteria (A′) and (B ′) under which we also obtain explicit results on the
convergence rate of the KKT residuals for the sequence generated by the ALM.

For any (w, y, s) ∈ W × Y × X and k � 0, denote

gk(y) := g0(y)−1/(2σk)‖y−yk‖2, gk(w, y, s) := g0(w, y, s)−1/(2σk)‖y−yk‖2.
(15)

For any given k � 0 and yk ∈ Y, let

⎧
⎪⎪⎨

⎪⎪⎩

ỹk(x) := ΠQ◦ [yk + σk(Bx − b)], w̃k(x) := ∇h(Ax),
s̃k(x) := Proxp∗ [x − (A∗w̃k(x) + B∗ ỹk(x) + c)],
ek(x) := x − Proxp[x − (A∗w̃k(x) + B∗ ỹk(x) + c)]

= A∗w̃k(x) + B∗ ỹk(x) + s̃k(x) + c,

x ∈ dom f 0. (16)

The following lemmaprovides an upper bound for the duality gap of theALMsubprob-
lem at the kth step. Recall that fk(·) is the objective function of the ALM subproblem
defined in (1).

Lemma 4 Let x ∈ dom f 0. Then for any k � 0,

| fk(x) − gk(w̃
k(x), ỹk(x), s̃k(x))| � |〈x − s̃k(x), ek(x)〉| + |p(x) − p(x − ek(x))|.

Proof By the definitions of s̃k(x) and ek(x), we have s̃k(x) = Proxp∗ [x − ek(x) +
s̃k(x)], which is also equivalent to x − ek(x) ∈ ∂p∗(s̃k(x)). From [47, Theorems 23.5
& 31.5] and the definition of w̃k(·) in (16), we have that

h(Ax) + h∗(w̃k(x)) = 〈Ax, w̃k(x)〉, p(x − ek(x)) + p∗(s̃k(x))
= 〈x − ek(x), s̃k(x)〉.

Hence, we obtain that

| fk(x) − gk(w̃k(x), ỹk(x), s̃k(x))|
= |h(Ax) + h∗(w̃k(x)) + 〈c, x〉 + p(x) + p∗(s̃k(x))

+〈ỹk(x)/σk, ỹk(x) − yk + σkb〉|
� |〈x,A∗w̃k(x) + c + s̃k(x) + B∗ ỹk(x)〉 − 〈ek(x), s̃k(x)〉|

+|p(x) − p(x − ek(x))|
+|〈ỹk(x)/σk, ỹk(x) − yk − σk(Bx − b)〉|

= |〈x − s̃k(x), ek(x)〉| + |p(x) − p(x − ek(x))|
+|〈ỹk(x)/σk,ΠQ[yk + σk(Bx − b)]〉|

= |〈x − s̃k(x), ek(x)〉| + |p(x) − p(x − ek(x))|,

where the last inequality is due to the fact that 〈ỹk(x),ΠQ[yk + σk(Bx − b)]〉 = 0 by
the definition of ỹk(·). ��

The following lemma, which is a direct consequence of [5, Theorem 7], establishes
a global upper bound on the distance from a given point to the dual feasible set under
the dual Robinson constraint qualification in Assumption 3.
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Lemma 5 Suppose that Assumptions 1–3 hold. Then there exists a constant γ � 1
such that for any w ∈ dom h∗, y ∈ Q◦ and s ∈ dom p∗,

dist ((w, y, s),FD2) � γ (1 + ‖(w, y, s)‖)‖A∗w + B∗y + s + c‖. (17)

Proof Note that underAssumptions 1–3, one can easily check (c.f. [9, Section2.3]) that
there exists (ŵ, ŷ, ŝ) ∈ FD2 with ŷ = (ŷ1, ŷ2) ∈ Y1 ×Y2 and ŝ = (ŝ1, ŝ2) ∈ X1 ×X2
such that

ŷ2 ∈ int (Q◦
2), ŝ2 ∈ int (dom p∗

2).

It then follows from [5, Theorem 7] that there exists a positive constant γ̄ such that
for any w ∈ dom h∗, y ∈ Q◦ and s ∈ dom p∗,

dist ((w, y, s),FD2) � γ̄ (1 + ‖ΠFD2(w, y, s) − (ŵ, ŷ, ŝ)‖)(‖A∗w
+B∗y + s + c‖ + ‖s − Πdom p∗(s)‖)

� γ̄ (1 + ‖(w, y, s) − (ŵ, ŷ, ŝ)‖)(‖A∗w + B∗y + s + c‖
+‖s − Πdom p∗(s)‖)

= γ̄ (1 + ‖(w, y, s)‖ + ‖(ŵ, ŷ, ŝ)‖)‖A∗w + B∗y + s + c‖.

The desired inequality can thus be established with γ = max{γ̄ (1+‖(ŵ, ŷ, ŝ)‖), 1}.
��

Equipped with Lemma 5, we are in the position to provide a computable upper
bound on the value fk(xk+1) − inf fk used in criteria (A′) and (B ′).

Proposition 7 Suppose that Assumptions 1–3 hold. Let k be a fixed but arbitrary non-
negative integer and ỹk(·), w̃k(·), s̃k(·), ek(·) be the functions defined in (16). Denote
z̃k(·) := (w̃k(·), ỹk(·), s̃k(·)). Suppose that {xk, j } j�0 is an approximate solution
sequence to the augmented Lagrangian subproblem in (1) such that fk(xk, j ) → inf fk
and ‖ek(xk, j )‖ → 0 as j → ∞. Then the sequences {xk, j } j�0 and {z̃k(xk, j )} j�0 are
bounded, {ỹk(xk, j )} j�0 converges to some point yk,∞ and the following inequality
holds:

fk(x
k, j ) − gk(z̃

k(xk, j )) � (‖xk, j‖ + ‖s̃k(xk, j )‖ + λp)‖ek(xk, j )‖. (18)

Moreover, let {tk, j } j�0 be a sequence satisfying 1 � sup j�0{tk, j } � inf j�0{tk, j } > 0.
Then there exists j̄ � 0 such that for any j � j̄ ,

‖ek(xk, j )‖ � 2tk, j
1 + ‖xk, j‖ + ‖z̃k(xk, j )‖

min

{
1

‖∇h∗(w̃k(xk, j ))‖ + ‖ỹk(xk, j ) − yk‖/σk + 1/σk
, 1

}
(19)

and
fk(x

k, j ) − inf fk � β2 tk, j , (20)

where

β :=
√
2[1 + λp + γ (‖b‖ + λp∗) + γ 2(1 + λ∇h∗)] (21)
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with the constant γ given in (17).

Proof FromLemma 1(a) and the assumption that fk(xk, j ) → inf fk , we know that the
sequence {ỹ j (xk, j )} j�0 approximately solves (I +σkTg)−1(yk) = argmin{−gk(y) |
y ∈ Y}, in the sense that

(1/2σk)‖ỹk(xk, j ) − yk,∞‖2 � fk(x
k, j ) − inf fk → 0 as j → ∞,

where yk,∞ ∈ Y is the unique optimal solution to the strongly convex problem
min{−gk(y) | y ∈ Y}. This further implies that {ỹk(xk, j )} j�0 is bounded and con-
verges to yk,∞. By using [49, Theorems 17 & 18], we obtain that gk(yk,∞) = inf fk
and the solution set of the augmented Lagrangian subproblem inf fk , for which we
denote it as SOL fk , is nonempty and any level set of fk is bounded. Hence, the
sequence {xk, j } j�0 is bounded. The boundedness of {z̃k(xk, j )} j�0 can be derived
from the boundedness of {(xk, j , ỹk(xk, j ))} j�0 and the local Lipschitz continuity of
∇h.

The inequality (18) is a direct consequence of Lemma 4 and the global Lipschitz
continuity of p. Since ‖ek(xk, j )‖ → 0 as j → ∞ and inf j�0{tk, j } > 0, there exists
a nonnegative integer j̄ such that (19) holds for any j � j̄ . Note that the inequality
(19) is valid since ‖ek(xk, j )‖ → 0 and {xk, j }, {z̃k(xk, j )} are bounded.

For any x ∈ dom f 0, denote z̄k(x) := (w̄k(x), ȳk(x), s̄k(x)) ∈ W × Y × X with

(w̄k(x), ȳk(x), s̄k(x)) := ΠFD2(z̃
k(x)).

By the global Lipschitz continuity of ∇h∗ and p∗, we obtain that for all j � 0,

|gk(z̃k(xk, j )) − gk(z̄k(xk, j ))|
� |h∗(w̃k(xk, j ) − h∗(w̄k(xk, j ))| + |〈b, ỹk(xk, j ) − ȳk(xk, j )〉|

+|p∗(s̃k(xk, j )) − p∗(s̄k(xk, j ))|
+(1/2σk)

∣∣‖ỹk(xk, j ) − yk‖2 − ‖ȳk(xk, j ) − yk‖2∣∣
� |〈∇h∗(w̃k(xk, j )), w̃k(xk, j ) − w̄k(xk, j )〉| + (λ∇h∗/2)‖w̃k(xk, j ) − w̄k(xk, j )‖2

+‖b‖‖ỹk(xk, j ) − ȳk(xk, j )‖
+λp∗‖s̃k(xk, j ) − s̄k(xk, j )‖ + (1/σk)|〈ỹk(xk, j ) − yk, ỹk(xk, j ) − ȳk(xk, j )〉|
+(1/2σk)‖ỹk(xk, j ) − ȳk(xk, j )‖2

�
(‖b‖ + λp∗ + ‖∇h∗(w̃k(xk, j ))‖ + (1/σk)‖ỹk(xk, j )
−yk‖‖)‖z̃k(xk, j ) − z̄k(xk, j )‖
+ 1

2

(
λ∇h∗ + 1/σk

)‖z̃k(xk, j ) − z̄k(xk, j )‖2.

Note that ‖z̃k(xk, j ) − z̄k(xk, j )‖ = dist(z̃k(xk, j ),FD2) and

A∗w̃k(x) + ỹk(x) + s̃k(x) + c = ek(x), ∀ x ∈ dom f 0.
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By using Lemma 5, we further get

|gk(z̃k(xk, j )) − gk(z̄k(xk, j ))|
� γ

(‖b‖ + λp∗ + ‖∇h∗(w̃k(xk, j ))‖ + (1/σk)‖ỹk(xk, j )
−yk‖)(1 + ‖z̃k(xk, j )‖)‖ek(xk, j )‖
+ 1

2γ
2(λ∇h∗ + 1/σk)(1 + ‖z̃k(xk, j )‖)2‖ek(xk, j )‖2.

The above inequality, together with (18), implies that for j � j̄ ,

fk(x
k, j ) − inf fk = fk(x

k, j ) − sup
y

{gk(w, y, s) | (w, y, s) ∈ FD2}

� fk(x
k, j ) − gk(z̄

k(xk, j )) = fk(x
k, j ) − gk(z̃

k(xk, j ))

+ gk(z̃
k(xk, j )) − gk(z̄

k(xk, j ))

�
(
1 + λp + γ (‖b‖ + λp∗) + γ 2λ∇h∗

)
(1 + ‖xk, j‖ + ‖z̃k(xk, j )‖)‖ek(xk, j )‖

+ (
γ ‖∇h∗(w̃k(xk, j )‖ + γ ‖ỹk(xk, j ) − yk‖/σk + γ 2/σk

)

× (1 + ‖xk, j‖ + ‖z̃k(xk, j )‖)‖ek(xk, j )‖,

where in deriving the second inequality, we used the fact in (19) that (1 + ‖xk, j‖ +
‖z̃k(xk, j )‖)‖ek(xk, j )‖ � 2. Now by using the inequality (19) and the fact that γ � 1,
we can show that (20) holds for any j � j̄ . This completes the proof. ��

Let {ε̂k} and {η̂k} be two given positive summable sequences. Suppose that for
some k � 0, yk ∈ Q◦ is not an optimal solution to (D). Let {xk, j } j�0 be a sequence
satisfying fk(xk, j ) → inf fk and ‖ek(xk, j )‖ → 0 as j → ∞. Then the limit yk,∞ of
{ỹk(xk, j )} j�0 must be different from yk because otherwise yk and any accumulation
point of {xk, j } j�0 would form a KKT solution point to (P), contradicting the assump-
tion that yk does not solve (D). This observation allows us to apply Proposition 7
with {tk, j } being either {ε̂2k/2σk} or {η̂2k/(2σk)‖ỹk(xk, j ) − yk‖2}, both of which are
bounded away from 0 as yk does not solve (D). Thus, we can use the following two
criteria to replace (A′) and (B ′), respectively:

(A′′) ‖ek+1‖ �
ε̂2k/σk

1 + ‖xk+1‖ + ‖zk+1‖
min

{
1

‖∇h∗(wk+1)‖ + ‖yk+1 − yk‖/σk + 1/σk
, 1

}
,

(B ′′) ‖ek+1‖ �
(η̂2k/σk)‖yk+1 − yk‖2
1 + ‖xk+1‖ + ‖zk+1‖

min

{
1

‖∇h∗(wk+1)‖ + ‖yk+1 − yk‖/σk + 1/σk
, 1

}
,

where

wk+1 := w̃(xk+1), yk+1 := ỹ(xk+1), sk+1 := s̃(xk+1),

zk+1 := (wk+1, yk+1, sk+1), ek+1 := ek(xk+1).
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In fact, for the augmented Lagrangian subproblem inf fk , its optimality condition can
be written as

x − Proxp
[
x − (A∗∇h(Ax) + c + B∗ΠQ◦ [yk − σk(b − Bx)])

]
= 0, x ∈ dom f 0.

Thus, if the (k + 1)th subproblem in the ALM is solved exactly, one must have
ek+1 = 0, indicating that both (A′′) and (B ′′) hold automatically. In fact, criteria
(A′′) and (B ′′) essentially require the residual of the above nonsmooth equation at the
current iteration to be sufficiently small, whereas the original criteria (A′) and (B ′)
proposed by Rockafellar in [50] ask the gap between the current objective function
value and the optimal objective function value to be sufficiently small. Proposition 7
says that under Assumptions 1–3, criteria (A′) and (B ′) are satisfied with εk = βε̂k
and ηk = βη̂k as long as (A′′) and (B ′′) are true. As far as we know, these easy-to-
implement criteria for the ALM have never been discovered before. It is also worth
mentioning that the computation of ek+1 requires not much extra cost in numerical
implementations, as shall be demonstrated in the next section.

Denote the natural residual mapping associated with the KKT optimality condition
(7) as

Rnat(x, y) :=
(
x − Proxp[x − (A∗∇h(Ax) + B∗y + c)]

y − ΠQ◦ [y − (b − Bx)]
)

, (x, y) ∈ dom f 0×Y.

(22)
It can be easily seen that x ∈ SOLP and y ∈ SOLD if and only if Rnat(x, y) = 0.
The following theorem establishes the global convergence and the asymptotic R-
superlinear convergence of theKKT residuals in terms of ‖Rnat(xk, yk)‖ under criteria
(A′′) and (B ′′).

Theorem 2 Suppose that Assumptions 1–3 hold. Let {(xk , yk)} be an infinite sequence
generated by the ALM in (1) under criterion (A′′). Then the sequence {yk} converges to
some y∞ ∈ SOLD, and the sequence {xk} is also bounded with all of its accumulation
points in SOLP.

If criterion (B ′′) is also executed in the ALM and the quadratic growth condition
(9) holds at y∞ with modulus κg, then there exists k′ � 0 such that for all k � k′,
βη̂k < 1 and

dist (yk+1,SOLD) � θk dist (y
k,SOLD), (23a)

‖Rnat(xk+1, yk+1)‖ � θ ′
k dist (y

k,SOLD), (23b)

where

{
θk :=

[
βη̂k + (βη̂k + 1)/

√
1 + σ 2

k κ2
g

]
/(1 − βη̂k) → θ∞ := 1/

√
1 + σ 2∞κ2

g ,

θ ′
k := [max{1, 1/σk} + (η̂2k/σk)‖yk+1 − yk‖]/(1 − βη̂k) → θ ′∞ := max{1, 1/σ∞},
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where the constant β is given in (21). Moreover, whenQ = {0}, i.e., the constraint in
(P) is Bx = b, the term θ ′

k in (23b) can be replaced by

θ ′
k := [1/σk + (η̂2k/σk)‖yk+1 − yk‖]/(1 − βη̂k) → θ ′∞ := 1/σ∞.

Proof All the statements except the inequality (23b) follow from Theorem 1 and the
inequality (20) in Proposition 7. Noting that under criterion (B ′′), we have

‖xk+1 − Proxp[xk+1 − (A∗∇h(Axk+1) + B∗yk+1 + c)]‖
= ‖ek+1‖ � (η̂2k/σk)‖yk+1 − yk‖2, ∀ k � 0. (24)

By using [58, Lemma 2] and (5a) in Proposition 2, we have for any σk � 1 that

‖yk+1 − ΠQ◦ [yk+1 − (b − Bxk+1)]‖
� ‖yk+1 − ΠQ◦ [yk+1 − σk(b − Bxk+1)]‖
= ‖ΠQ◦ [yk + σk(Bxk+1 − b)] − ΠQ◦ [yk+1 + σk(Bxk+1 − b)]‖
� ‖yk+1 − yk‖ (25)

and by using [24, Lemma 1] and (5a) in Proposition 2, we have for any 0 < σk < 1
that

‖yk+1 − ΠQ◦ [yk+1 − (b − Bxk+1)]‖
� (1/σk)‖yk+1 − ΠQ◦ [yk+1 − σk(b − Bxk+1)]‖
= (1/σk)‖ΠQ◦ [yk + σk(Bxk+1 − b)] − ΠQ◦ [yk+1 + σk(Bxk+1 − b)]‖
� (1/σk)‖yk+1 − yk‖. (26)

Then, from (25) and (26), we obtain that for any k � 0

‖yk+1 − ΠQ◦ [yk+1 − (b − Bxk+1)]‖ � max{1, 1/σk}‖yk+1 − yk‖.

Thus, by using (24) and Lemma 3, we know that there exists k′ � 0 such that for all
k � k′, βη̂k < 1 and (23b) holds.

Finally, by observing that for the equality constrained case with Q = {0} in (P), it
holds that for all k � 0,

‖yk+1 − ΠQ◦ [yk+1 − (b − Bxk+1)]‖ = ‖b − Bxk+1‖ = (1/σk)‖yk+1 − yk‖,

we can complete the proof of this theorem. ��
Below we make a couple of remarks regarding the convergence rates proven in

Theorems 1 and 2 for the ALM applied to CCCP.

Remark 1 Under the dual quadratic growth condition at y∞, the Q-linear convergence
of the dual sequence {yk} in Theorem 1 is an extension of the results established in
[50, Theorem 4] and [37, Theorem 2.1], while the R-linear convergence rates of the
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primal feasibility, complementarity and primal objective value in Theorem 1, and
of the KKT residuals in Theorem 2, to the best of our knowledge, are only proven
here. The latter results resolve the convergence rates for the KKT residuals of the
sequence generated by the ALM when the KKT solution mapping does not possess
the restrictive calmness condition. They also reveal that the ALM is indeed a dual-type
method, in the sense that its KKT convergence rates can be derived by solely using
the property of the dual solution mapping. This feature distinguishes the ALM from
the primal-dual-type methods, such as the alternating direction method of multipliers
(ADMM), for which the convergence rate is derived under proper assumptions on
the KKT solution mapping, see, e.g., [26, Theorem 2]. As mentioned in Sect. 3, the
calmness of the KKT solution mapping, which is a strictly stronger condition than
that of the dual solution mapping, is difficult to be satisfied for non-polyhedral CCCP.
Hence, the above arguments partially explain why the ADMM does not perform well
for many challenging CCCP problems, as shown by the extensive numerical results
conducted in [14,36,59].

Remark 2 All the convergence rates proven in Theorems 1 and 2 become asymptot-
ically superlinear if the penalty parameters σk → +∞. In numerical computations,
one may progressively increase σk to achieve a fast linear rate. As an example, when
σk ≈ 1/κg with κg being the dual quadratic growth modulus, the convergence rate
is about 1/

√
2. Of course, in general one does not know κg in practice, and hence

the adjustment of σk to achieve fast convergence is always an important issue in the
practical implementation of the ALM.

5 Applications to linear and convex quadratic SDP

In this section, we will illustrate the usefulness of the results obtained in the last
section in the context of linear and convex quadratic SDP problems. With the rich
structure exhibited in this class of problems, we are able to gain more insights on the
superior properties of the ALM. The convex quadratic SDP problem and its dual take
the following forms:

min
x=(x1,x2,x3)

f 0(x) := 1

2
〈x1,Hx1〉 − 〈b, x2〉 + δSn+(x3)

s.t. −Hx1 + E∗x2 + x3 = C, x1 ∈ Ran (H)

(QSDP-P)

and

max
X

g0(X) := −1

2
〈X,HX〉 − 〈C, X〉

s.t. EX = b, X ∈ S
n+,

(QSDP-D)

where H : S
n → S

n is a self-adjoint positive semidefinite linear operator, E : S
n →

R
m is a linear map,C ∈ S

n and b ∈ R
m are given data, and Ran (H) is the range space

of H. Here, we swap the primal and dual formats from the conventional treatments
such as in [36] to make our discussions consistent with the previous sections. Problem
(QSDP-P) is a special instance of (P) by taking the functions h and p as
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h(x) = 1

2
〈x1,Hx1〉, p(x) = δSn+(x3), x = (x1, x2, x3) ∈ X := Ran (H) × R

m × S
n .

In the solvers SDPNAL/SDPNAL+ (for solving linear SDP with H = 0) [59,60]
andQSDPNAL [36], the authors designedALMs for solving (QSDP-P) that employed
the semismooth Newton-CG method to obtain high quality approximate solutions for
the inner subproblems. Specifically, given an initial point X0 ∈ S

n+ and a positive
scalar sequence σk ↑ σ∞ � +∞, the kth iteration of the ALM is given by

⎧
⎨

⎩
xk+1 ≈ argmin

x∈X

{
fk(x) := f 0(x) + 1

2σk
(‖Xk + σk

(
−Hx1 + E∗x2 + x3 − C)‖2 − ‖Xk‖2

)}
,

Xk+1 = Xk + σk(−Hxk+1
1 + E∗xk+1

2 + xk+1
3 − C).

We have the following sufficient conditions of the dual quadratic growth condition for
the convex quadratic SDP problems, which can be obtained from [14, Theorems 13
& 18].

Proposition 8 Assume that the KKT system to (QSDP-P) has at least one solution.
Then, the quadratic growth condition for (QSDP-D) holds at a dual optimal solution
X ∈ S

n if either there exists a KKT point (x̂, X̂) ∈ X × S
n such that rank(X̂) +

rank(x̂3) = n (X̂ may be different from X), or the following SOSC holds at X:

sup
(x̄1,x̄2,x̄3)∈SOLP

〈D,HD〉 + 2〈x̄3, DX
†
D〉 > 0, ∀ D ∈ C(X) \ {0},

where X
†
is the Moore-Penrose pseudoinverse of X and C(X) is the critical cone of

the dual problem at X, i.e.,

C(X) =
{
D ∈ S

n | ED = 0, D ∈ TSn+(X), 〈D,HX + C〉 = 0
}

.

Proposition 8 says that for the convex quadratic SDP problem, if a partially strictly
complementarity solution associated with the non-polyhedral constraint X ∈ S

n+
exists, then the dual quadratic growth condition holds at any dual optimal solution.
In fact, we have a relatively complete picture on the relationships between the fol-
lowing concepts and properties associated with convex quadratic SDP: the Lipschitz
continuity (Lip.) and robust isolated calmness (r.iso.calm) of the primal/dual/KKT
solution mappings at the origin, the quadratic growth condition (q-grow.) for the pri-
mal/dual problems at optimal solution points, the SOSC for the primal/dual problems,
the extended strict Robinson constraint qualification (eSRCQ) for the primal/dual
problems (for its definition, see [27, Definition 5.1]) and the existence of a partially
strictly complementarity KKT solution (∃ strict comp.sol.). They are summarized in
the diagram below.

In the above diagram, the relations (a) and (b) are from [27, Propositions 5.3 &
5.4]; the implications (c), (d), (o) and (p) are results of [14, Theorems 12 & 13] (see
also Proposition 8 in the above); the equivalence in (e) between the SOSCs for both
(P) and (D) and the Lipschitz continuity or the robust isolated calmness of T−1

l at the
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Fig. 2 Adiagram of the Lipschitzian-like properties for convex quadratic SDP (the first three columns refer
to the cases with a unique solution while the last three columns refer to the cases with possibly multiple
solutions)

origin is given by Proposition 6 and [27, Theorem 5.1]; the implications ( f )-(l) can be
directly obtained by definitions; the relations (m) and (n) are stated in Proposition 4
and the negated implication (q) is demonstrated by Example 2.

Figure 2 further explains that the dual quadratic growth condition is fairly mild,
much weaker than the calmness of T−1

l at the origin. As suggested by Theorem 2, the
convergence rate of the KKT residuals for {(xk, Xk)} is asymptotically R-superlinear
under the quadratic growth condition for (QSDP-D),while theweakest known assump-
tion to ensure the linear convergence rate of the ADMM for solving (QSDP-P) is the
calmness of theKKT solutionmapping T−1

l at the origin for aKKTpoint [26, Theorem
2].

In the following, we shall illustrate how to implement criteria (A′′) and (B ′′) if the
subproblems in the ALM are solved by the semismooth Newton-CG method without
incurring significant extra computational costs. For any (x1, x2) ∈ Ran (H)×R

m and
k � 0, denote

ψk(x1, x2) := 1

2
〈x1,Hx1〉 − 〈b, x2〉

+ 1

2σk
(‖ΠS

n+[Xk + σk(−Hx1 + E∗x2 − C)]‖2 − ‖Xk‖2).

One can easily check that if (x̃1, x̃2, x̃3) ∈ argmin{ fk(x) | x ∈ X}, we have

{
(x̃1, x̃2) ∈ argmin{ψk(x1, x2) | (x1, x2) ∈ Ran (H) × R

m},
x̃3 = (1/σk)ΠS

n+[−Xk − σk(−Hx̃1 + E∗ x̃2 − C))]. (27)

To solve the above optimization problem associated with (x1, x2) inexactly, it suffices
to approximately solve the following nonsmooth equation by the semismoothNewton-
CG method:

∇ψk(x1, x2) =
(Hx1 − HΠS

n+[Xk + σk(−Hx1 + E∗x2 − C)]
−b + EΠS

n+[Xk + σk(−Hx1 + E∗x2 − C)]
)

= 0, (28)
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where (x1, x2) ∈ Ran (H) × R
m . After obtaining an approximate solution (xk+1

1 ,

xk+1
2 ) ∈ Ran (H) × R

m to the above equation, we set

xk+1
3 = (1/σk)ΠS

n+[−Xk − σk(−Hxk+1
1 + E∗xk+1

2 − C)].

Direct computations show that the vector ek+1 used in criteria (A′′) and (B ′′) is given
by

ek+1 =
(∇ψk(x

k+1
1 , xk+1

2 )

0

)
with xk+1 = (xk+1

1 , xk+1
2 , xk+1

3 ).

If a semismooth Newton-CGmethod is adopted to solve the Eq. (28), which is exactly
the method employed in the solvers SDPNAL [60], SDPNAL+ [59] and QSDPNAL
[36], the stopping criteria (A′′) and (B ′′) then turn out to be

( Ã′′) ‖∇ψk(x
k+1
1 , xk+1

2 )‖ �
ε̃2k/σk

1 + ‖xk+1‖ + ‖Xk+1‖
min

{
1

‖HXk+1‖ + ‖Xk+1 − Xk‖/σk + 1/σk
, 1

}
,

(B̃ ′′) ‖∇ψk(x
k+1
1 , xk+1

2 )‖ �
(η̃2k/σk)‖Xk+1 − Xk‖2
1 + ‖xk+1‖ + ‖Xk+1‖

min

{
1

‖HXk+1‖ + ‖Xk+1 − Xk‖/σk + 1/σk
, 1

}

with the given positive summable sequences {ε̃k} and {η̃k}. Since the sequence {xk}
generated by the semismooth Newton-CG method satisfies fk(xk+1) → inf fk , under
the RCQ for (QSDP-D), criteria ( Ã′′) and (B̃ ′′) are achievable due to Proposition 7.
Interestingly, it does not need much extra computational costs to check criteria ( Ã′′)
and (B̃ ′′), since the value ∇ψk(x

k+1
1 , xk+1

2 ) would be used in the next iteration step
of the inner semismooth Newton-CG method.

The natural residual mapping associated with the KKT optimality condition for
(QSDP-P), in the sense of (22), takes the form of

R(x, X) :=

⎛

⎜
⎜
⎝

Hx1 − HX
−b + EX

x3 − ΠS
n+(x3 − X)

Hx1 − E∗x2 − x3 + C

⎞

⎟
⎟
⎠ ,

x = (x1, x2, x3) ∈ Ran (H) × R
m × S

n+, X ∈ S
n .

Based on Theorem 2, under the Robinson constraint qualification and the mild dual
quadratic growth condition and criteria ( Ã′′) and (B̃ ′′), we know that the sequence {Xk}
generated by the ALM converges asymptotically Q-superlinearly, and the KKT resid-
uals {‖R(xk, Xk)‖} converges asymptotically R-superlinearly. These much desired
fast convergence rates have been observed in the solvers SDPNAL [60], SDPNAL+
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[59] and QSDPNAL [36] for solving linear and convex quadratic SDP problems and
actually can be used to explain the good performance of these solvers.

In the last part of this section,we shall conduct somenumerical experiments to verify
the derived convergence rates. Consider the following weighted nearest correlation
matrix problem:

min
X

1
2‖H ◦ (X − G)‖2

s.t. Xii = 1, i = 1, 2, . . . , n, X ∈ S
n+,

(29)

whereG ∈ S
n is an observed sample correlationmatrix, H ∈ S

n is a given nonnegative
weight matrix and ◦ denotes the Hadamard product, i.e., (A ◦ B)i j = Ai j Bi j for
any A, B ∈ S

n . This model has been widely used in finance for estimating sample
correlation matrices with missing data, where a typical choice of the weight matrix
H is to ask Hi j = 1 if Gi j is observed and Hi j = 0 if Gi j is missing [29]. Other
examples of the matrix H in finance can be found in [8].

Define H(W ) = H ◦ H ◦ W for W ∈ S
n , and C = H ◦ H ◦ G. The dual of (29)

can be written as

min
y,W,S

1
2 〈W,HW 〉 −

n∑

i=1

yi + δSn+(S)

s.t. diag(y) − HW + S = C, W ∈ Ran(H),

(30)

where diag(y) is the diagonal matrix with the vector y as its diagonal. Obviously (30)
is in the form of (QSDP-P). We can apply the ALM in (27) to solve (30) with the
subproblems being solved by the semismooth Newton-CG method. One nice feature
of the nearest correlation matrix problem is that the constraints in (29) are always
nondegenerate, making the semismooth Newton-CG method converging at least Q-
superlinearly [43].

In our numerical experiments, we take the matrix G to be the indefinite symmetric
matrices constructed from stock data by the investment company Orbis [30] (one with
thematrix dimensions 1399×1399 and the otherwith dimensions 3210×3210), which
are available at https://github.com/higham/matrices-correlation-invalid.We randomly
set some entries Hi j = 0 (the corresponding Gi j are thus treated as “missing” from
the the observations) and the other entries Hi j = 1. The penalty parameter {σk} is
chosen in the way that σ0 = 1 and σk+1 = 1.2σk . Figure 3 shows the semi-log curves
of the KKT residuals versus the ALM iteration count, where one can easily observe
the linear convergence.

6 Concluding discussions

In this paper, we have established the asymptotic R-superlinear convergence of the
KKT residuals for the iterates generated by the ALM for solving CCCP, under a fairly
mild quadratic growth condition on the dual problem, for which neither the primal
nor the dual solution is required to be unique. The obtained result has provided a
plausible theoretical explanation to the numerical success of the solvers SDPNAL
[60], SDPNAL+ [59] and QSDPNAL [36] for solving linear and convex quadratic
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Fig. 3 The KKT residuals of the ALM for solving the dual problem (30) of the H-weighted nearest
correlation matrix problem (29) with missing data

SDP problems. We believe that the research presented in this paper has provided a
practical guide for designing efficient general large scale CCCP solvers in the future.
One question that has not been answered here iswhether the primal sequence generated
by the ALM for solving CCCP can also converge asymptotically superlinearly without
the upper Lipschitz continuity of the KKT solution mapping at the origin.
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for his comments on the unboundedness of the Lagrangian multipliers of the KKT solution mapping of
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Appendix.

1: Proof of Lemma 2

Proof Obviously if the quadratic growth condition for (D2) holds at (w̄, ȳ,−A∗w̄ −
B∗ ȳ − c) ∈ SOLD2, then the quadratic growth condition for (D) holds at ȳ ∈ SOLD.
Nowwe prove the reverse implication.We first show that there exist positive constants
ε and μ such that

− g0(w, y, s) � − sup (D) + μ‖w − w̄‖2, ∀ (w, y, s) ∈ FD2 ∩ Bε(w̄, ȳ, s̄). (31)
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It follows from w̄ ∈ dom h∗ and the local strong convexity of h∗ that there exist
positive constants ε and μ such that

h∗(w) � h∗(w̄)+〈∇h∗(w̄), w − w̄〉+μ‖w − w̄‖2, ∀ w ∈ Bε(w̄)∩dom h∗. (32)

Let x̄ ∈ SOLP be given such that (w̄, ȳ, s̄, x̄) satisfies the KKT optimality condition
(10). By the convexity of p∗, we also get

p∗(s) � p∗(s̄) + 〈 x̄ , s − s̄ 〉 = p∗(s̄) + 〈 x̄ ,A∗(−w + w̄) + B∗(−y + ȳ) 〉,
∀ (w, y, s) ∈ FD2. (33)

Note thatBx̄−b ∈ NQ◦(ȳ) implies 〈Bx̄−b, y〉 � 0 for any y ∈ Q◦ and 〈Bx̄−b, ȳ〉 =
0. One can thus derive the inequality (31) by adding the two inequalities (32) and (33).
Now by shrinking ε if necessary, we have, for any (w, y, s) ∈ FD2 ∩ Bε(w̄, ȳ, s̄),

−g0(w, y, s) � −g0(y)/2 − g0(w, y, s)/2
� (− sup (D) + κ2dist2 (y,SOLD))/2 + (− sup (D) + μ‖w − w̄‖2)/2
� − sup (D) + min{κ2/2, μ/2}(dist2 (y,SOLD) + ‖w − w̄‖2),

where in the second inequality the first term is due to the assumed quadratic growth
condition for (D) at ȳ with modulus κ2, and the second term comes from (31). Finally,
it follows that for any ŷ ∈ SOLD and any (w, y, s) ∈ FD2 ∩ Bε(w̄, ȳ, s̄),

dist2((w, y, s),SOLD2) � ‖w − w̄‖2 + ‖y − ŷ‖2 + ‖s − s̄‖2
= ‖w − w̄‖2 + ‖y − ŷ‖2 + ‖A∗(w − w̄) + B∗(y − ŷ)‖2
� (1 + 2‖A∗‖2)‖w − w̄‖2 + (1 + 2‖B∗‖2)‖y − ŷ‖2,

which, with ŷ := ΠSOLD(y), implies

dist2((w, y, s),SOLD2) � (1 + 2‖A∗‖2)‖w − w̄‖2 + (1 + 2‖B∗‖2)dist2 (y,SOLD).

Thus, the quadratic growth condition (11) holds at (w̄, ȳ, s̄) ∈ SOLD2 for (D2). ��

2: Proof of Proposition 1(c)

Proof The convergence of {zk} under criterion (A) has been proven in Proposition 1.
To establish the desired convergence rate, we first recall that the calmness of the
mapping T−1 at the origin for z∞ with modulus κ asks for the existence of positive
constants ε and δ such that

dist(z, T−1(0)) � κ‖u‖, ∀ z ∈ T−1(u) ∩ Bδ(z
∞), ∀ u ∈ Bε(0).

From parts (a) and (b) in Proposition 1 and the convergence of {zk}, we obtain that

Pk(z
k) ∈ T−1((zk − Pk(z

k))/σk), ∀ k � 0 and Pk(z
k) → z∞ as k → ∞,
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which, imply the existence of a nonnegative integer k̄ such that

dist(Pk(z
k), T−1(0)) � (κ/σk)‖zk − Pk(z

k)‖, ∀ k � k̄.

Now taking z̄ = ΠT−1(0)(z
k) in Proposition 1(b), we deduce that for any k � 0,

‖zk − Pk(zk)‖2 � ‖zk − ΠT−1(0)(z
k)‖2 − ‖Pk(zk) − ΠT−1(0)(z

k)‖2
� dist2(zk, T−1(0)) − dist2(Pk(zk), T−1(0)).

Thus, it holds that

dist(Pk(z
k), T−1(0)) � κ/

√
κ2 + σ 2

k dist(zk, T−1(0)), ∀ k � k̄.

Hence, if criterion (B) is also executed, we have that for any k � k̄,

‖zk+1 − ΠT−1(0)(Pk(z
k))‖

� ‖zk+1 − Pk(zk)‖ + ‖Pk(zk) − ΠT−1(0)(Pk(z
k))‖

� ηk‖zk+1 − zk‖ + ‖Pk(zk) − ΠT−1(0)(Pk(z
k))‖

� ηk(‖zk+1 − ΠT−1(0)(Pk(z
k))‖ + ‖zk − Pk(zk)‖)

+(ηk + 1)‖Pk(zk) − ΠT−1(0)(Pk(z
k))‖

� ηk‖zk+1 − ΠT−1(0)(Pk(z
k))‖ +

[
ηk + (ηk + 1)κ/

√
κ2 + σ 2

k

]
dist(zk, T−1(0)).

Then the inequality in part (c) of Proposition 1 readily follows from the fact that
dist(zk+1, T−1(0)) � ‖zk+1 − ΠT−1(0)(Pk(z

k))‖ for any k � 0. ��

3: Proof of Proposition 3(b)

Proof ByLemma1(b) and the convergenceof {yk},wehavedist (0, Tl(xk+1, yk+1)) →
0 under criterion (B̃). Therefore, by the upper Lipschitz continuity of T−1

l at the origin,
we can derive, for k sufficiently large,

dist ((xk+1, yk+1), T−1
l (0)) � κl dist (0, Tl(xk+1, yk+1))

� κl (dist2 (0, ∂ fk(xk+1) + (1/σ 2
k )‖yk+1 − yk‖2)1/2

� (κl/σk)(1 + η′2
k )‖yk+1 − yk‖.

This completes the proof of this part. ��
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