A numerical investigation on the sound insulation of ventilation windows

Xiang Yu a, Siu-Kit Lau b, Li Cheng c, Fangsen Cui a,⇑

a Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
b Department of Architecture, National University of Singapore, Singapore 117566, Singapore
c Department of Mechanical Engineering, The Hong Kong Polytechnic University, 90077, Hong Kong

Article info
Article history:
Received 17 July 2016
Received in revised form 14 October 2016
Accepted 9 November 2016
Available online 16 November 2016

Keywords:
Ventilation window
Sound reduction index
Diffuse field
Finite element method
Micro-perforated panel

Abstract
A simulation model is proposed and developed for predicting the sound insulation performance of ventilation windows in buildings, which complies with the laboratory measurement standard ISO 10140. Finite element method (FEM) with verified model definitions is implemented to characterize the airborne sound transmission. An acoustic cavity with rigid-boundaries is used to simulate the diffuse field on the source side of the window, with its diffuseness verified with the pressure field uniformity. On the receiver side, a free field with an infinite baffle is assumed to capture the transmitted sound power. The Sound Reduction Index (SRI) is calculated from the difference between the source and receiving sound power levels in the one-third octave band. Using the proposed model, different ventilation window configurations, consisting of partially open single glazing, double glazing with staggered openings and that with sound absorbers are systematically investigated. Parametric studies are carried out to investigate the effects of various window dimensions and absorber parameters. Simple formulas are proposed for estimating the SRI in the mid-to-high frequency range, providing guidelines for engineering designs. The validity of the numerical model is confirmed by comparisons with full-scale experimental results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The need of environmental sustainability calls for the development of natural ventilation technologies to enhance occupant comfort for high-performance buildings. Traditionally, casement windows, top-hung windows and single sliders are commonly adopted window designs, whose structures are simply formed by a single layer of partially open glazing. However, the ventilation openings can easily cause poor noise insulation problem, hampering their uses in densely populated and noisy areas. Hence, the design of building windows capable of achieving natural ventilation whilst warranting required noise mitigation remains an attractive and challenging topic. In 1970s, Ford and Kerry [1,2] first proposed the use of partially open double glazing with staggered inlet-outlet openings to improve the sound insulation. By conducting laboratory and field tests, they claimed the window could provide satisfactory acoustic and ventilation performance. Since then, this simple window construction has aroused continuous research interests [3–11]. For example, Kang et al. [3,4] studied the feasibility of integrating transparent micro-perforated absorbers into the air channel between the double glazing. Through extensive experiments, they demonstrated the acoustic responses were sensitive to the selection of window parameters, showing the need for a prediction model. By adopting active noise cancellation technology, Huang et al. [5] further mitigated the low-frequency noise penetrating through the air channel. More recently, Søndergaard and Olesen [7,8] prototyped a “supply air window” and attempted to optimize its acoustic performance. Tong et al. [9,10] proposed a “plenum window” and conducted both scale-down laboratory and in-situ field measurement. It was shown from these experimental works that open double glazing can significantly improve the sound insulation compared to open single glazing. With appropriate treatment of sound absorbing materials, the resultant SRI can even be comparable to a closed single glazing. Nevertheless, a numerical model that can systematically address the need for design and optimization is still lacking. This becomes increasingly important considering the large number of parameters involved in the system design, which, without a reliable simulation model, can hardly be entertained.

Theoretically, the Sound Reduction Index (SRI), as the basic measure of the sound insulation capability of a window, characterizes the proportion of incident sound energy that cannot transmit...
through its surface. To measure the SRI, ISO 10140 standards [12] specify the necessary requirements and practical guidelines for conducting the laboratory experiments. A schematic diagram of the test-rig is shown in Fig. 1, where the test specimen is mounted on a separation wall between a source and a receiving room. Although the test procedure has been well documented, the experiment is only useful for testing the performance of an existing window rather than for seeking a better design, mainly due to the cost of prototypes, experimental reliability and repeatability issues. To solve this problem and potentially shorten the product development cycle, many recent studies have attempted to develop numerical models facilitating the prediction of insulating structures [13–20]. For example, Papadopoulos [13,14] used a virtual laboratory tool to calculate the wall Transmission Loss (TL), where an algorithm was proposed to optimize the shape of the test rooms to obtain adequate diffuseness. Chazot and Guyader [15] formulated a computationally efficient patch-mobility method to predict the TL of a double panel coupled with an air cavity. The simulation repeatability issue caused by the variation of room dimensions and source locations was discussed by Dijkstra and Vermeir [17]. Unfortunately, despite the numerous works found on closed structures, simulations on open windows are scarce, if not inexistent, to the best knowledge of the authors.

The aim of this study is to develop a numerical model for predicting the acoustic performance of open windows, with an attempt to systematically address the effect of changing window parameters. To comply with ISO standard, the source field is modeled as a large acoustic cavity with rigid boundaries, for simulating parameters. To comply with ISO standard, the source field is modulated by using a proposed theoretical formulation. As for the radiation field on the receiver side, a free space with an infinite rigid baffle is assumed to capture the transmitted sound power, which mimics an anechoic chamber in the experiment [3,15]. The sound power levels on the source and receiving side of the window, characterized by the acoustic properties of the two fields, respectively, are obtained to calculate the SRI of the window in one-third (1/3) octave frequency band. Detailed descriptions of the proposed simulation model are presented in Section 2.

Based on the proposed numerical model, the SRI characteristics of typical ventilation window configurations will be investigated. An open single glazing is illustrated in Fig. 2(a), where the opening refers to the area which is physically open, allowing for free air passage. In practical implementations, the window can operate by either sliding or pivoting to control the degree of the opening. In practical implementations, the window can operate as a large acoustic cavity with rigid boundaries, for simulating a diffuse room condition [21,22]. The diffuseness is verified with a diffuse room condition [21,22]. The diffuseness is verified with an anechoic chamber in the experiment [3,15]. The sound power is assumed to capture the transmitted sound power, which mimics an anechoic chamber in the experiment [3,15]. The sound power levels on the source and receiving side of the window, characterized by the acoustic properties of the two fields, respectively, are obtained to calculate the SRI of the window in one-third (1/3) octave frequency band. Detailed descriptions of the proposed simulation model are presented in Section 2.

Let us consider a rectangular cavity with rigid boundary conditions as sketched in Fig. 3, which intends to simulate a diffuse source room for a two-dimensional analysis. The room dimension $S_x \times S_y$ is chosen as 5×6 m, with an aspect ratio of $2/1 = 1.2$ as suggested by Ref. [13]. The window to be tested is mounted on the wall at $x = 5$ m, and a sound source S is placed near the opposite corner to the test element.

For harmonic analysis conducted in the frequency domain (with time-dependent term $e^{i\omega t}$ being omitted), the Helmholtz equation governing the sound pressure distribution can be written as:

$$\nabla^2 p_c(x, y) + k^2 p_c(x, y) = q e^{i\omega t} \delta(x - x_s, y - y_s),$$ \(1\)

where p_c is the sound pressure at any point inside the cavity, k is the wavenumber with $k = \omega/c_0$, ω and c_0 are the angular frequency and the sound speed in air, respectively. $j = \sqrt{-1}$ and t is time. The air absorption effect can be accounted by using a complex sound speed $c_0 = c_0(1 + \eta j)$, with η being the damping loss factor. For the source term, q describes the sound amplitude and ϕ the phase angle; δ is the Dirac delta and coordinates (x_s, y_s) specify the source location.

Using the modal expansion approach, the pressure field can be decomposed as:

$$p_c(x, y) = \sum m a_m^m \phi_m^m(x, y),$$ \(2\)

where a_m^m is the m-th modal amplitude of the cavity, ϕ_m^m is the mode shape function. For the rigid rectangular-shaped cavity, the following analytical expression for the acoustic modes can be applied:

$$\phi_m^m = \cos(k_x x) \cos(k_y y) = \cos \left(\frac{m_x \pi}{S_x} x \right) \cos \left(\frac{m_y \pi}{S_y} y \right), \quad m_x, m_y = 0, 1, 2, \ldots,$$ \(3\)

where k_x and k_y are the wavenumbers in the x and y directions, S_x and S_y are the cavity dimensions, while m_x and m_y are the modal indices, respectively. The resonant frequencies are $f_m = c_0 \sqrt{(m_x/S_x)^2 + (m_y/S_y)^2}/2$. Note that the mode shape function for a complex-shaped cavity can be obtained by using FEM [24].
Aiming at a diffuse condition, it is well known that adequate diffuseness is more likely to establish with higher modal density. The modal density can be described by the number of acoustic modes \(N_{\text{modes}} \) presented in each frequency band. For the present room dimension, the numbers of modes \(N_{\text{modes}} \) versus the center frequency of 1/3 octave bands from 63 Hz to 2000 Hz are tabulated in Table 1. Nélisse and Nicolas [21] suggested a criterion that at least 6 modes shall exist per 1/3 octave band for the diffuse field to form, which corresponds to 125 Hz in Table 1. The source term can be defined as

\[
q_m N_{m}^c (k_m^2 - k_m^2) = \int_{\mathcal{S}_c} q e^{i \theta_m} \varphi_m^c ((x, y)) dS_c
\]

\[
= q e^{i \theta_m} \cos(k_1 x) \cos(k_2 y),
\]

where \(k_m = \sqrt{k_1^2 + k_2^2} \), and the cavity modal mass is:

\[
N_{m}^c = \int_{\mathcal{S}_c} \varphi_m^c \varphi_m^c dS_c = \begin{cases} S_x S_y, & m_x = 0, m_y = 0 \quad \text{or} \quad m_x \neq 0, m_y = 0. \\ 0.25 S_x S_y, & m_x \neq 0, m_y \neq 0 \end{cases}
\]

(6)

On substituting the expression of \(a_m^c \) into Eq. (2), the sound pressure becomes:

\[
p_r = \sum_m Q \varphi_m^c / \left[N_{m}^c (k_1^2 - k_m^2) \right].
\]

(7)

The root-mean-square value of the sound pressure level (SPL) \(L_r \) at any receiving point \(r \) inside the cavity is:

\[
L_r (x, y) = 20 \log (p_{rms}/p_0) = 20 \log \left[\sum_m \varphi_m^c (x, y) / \sqrt{2} \right].
\]

(8)

where \(p_{rms} = p_r / \sqrt{2}, \) \(p_0 \) is the reference acoustic pressure (i.e. 20 \(\mu \)Pa in air). To validate the above formulation, the SPL at a receiving point (2, 3) \(\text{m} \) is calculated in the linear frequency range from 10 Hz to 500 Hz, which is compared to the result obtained from FEM analysis.

To check the pressure field uniformity, the standard deviation of the SPLs within a receiving region is quantified. In the calculation, the entire frequency range of interest is either linearly or logarithmically partitioned into a number of frequency points. To compare the result in the 1/3 octave band, the SPL is averaged over \(N_f \) discrete frequencies for each band:

Table 1

<table>
<thead>
<tr>
<th>(f_1) (Hz)</th>
<th>(N_{\text{modes}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>3</td>
<td>160</td>
<td>12</td>
<td>400</td>
<td>62</td>
<td>1000</td>
<td>384</td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>200</td>
<td>16</td>
<td>500</td>
<td>95</td>
<td>1250</td>
<td>611</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>250</td>
<td>24</td>
<td>630</td>
<td>155</td>
<td>1600</td>
<td>962</td>
</tr>
<tr>
<td>125</td>
<td>7</td>
<td>315</td>
<td>44</td>
<td>800</td>
<td>247</td>
<td>2000</td>
<td>1523</td>
</tr>
</tbody>
</table>
Using Eq. (9), the SPLs at a total number of \(N_r = 66 \) points lying in the area are calculated, and their mean value is:

\[
\bar{L}_r(f_c) = \frac{\sum_{f_l}^{f_u} L_r(f_c)}{N_r}. \tag{10}
\]

The standard deviation can be calculated as:

\[
SD(f_c) = \sqrt{\frac{\sum_{r=1}^{N_r} [L_r(f_c) - \bar{L}_r(f_c)]^2}{N_r}}. \tag{11}
\]

As discussed in Refs. [13,21], a standard deviation of less than 1.5 dB would be able to support a diffuse field. To verify this for 125 Hz, the standard deviation versus 1/3 octave frequencies is calculated for two cases with \(\eta = 0 \) and \(\eta = 0.005 \), respectively. Fig. 5 shows that the standard deviation is initially high between 63 Hz and 125 Hz, indicating that the room model is not diffuse in the low-frequency region. Above 125 Hz, the deviation gradually decreases as frequency increases, and the value stabilizes at below 1.5 dB after 250 Hz where the modal density has increased to 24 modes per 1/3 band. Therefore, without further tuning the cavity dimension, the room model is diffuse in the frequency range between 250 Hz and 2000 Hz, and is reasonable diffuse between 125 Hz and 250 Hz.

2.2. Sound Reduction Index (SRI)

The above source room is used to predict the SRI of the ventilation windows, and the transmitted power is evaluated from the sound radiation into a semi-infinite free space, mimicking a anchoic room, as illustrated in Fig. 6. The SRI can be evaluated by:

\[
SRI = 10\log_{10} \left(\frac{W_S}{W_R} \right) = L_S^W - L_R^W, \tag{12}
\]

where \(W_S \) and \(W_R \) are the sound powers; \(L_S^W \) and \(L_R^W \) the sound power levels (SWLs), being incident on and radiated by the test element, respectively. The semi-infinite free space is realized by embedding the outlet opening in a large sized rigid baffle, with non-reflecting conditions being applied at the far field boundaries.

Given a diffuse source condition, the incident SWL \(L_S^W \) can be determined from the averaged SPL in the 2D source room [17]:

\[
L_S^W(f_c) = 10 \log \left(\frac{A}{2 \rho_0 c_0} \left(\frac{\sum_1^{10^{14/10}}}{N_S} \right) \right), \tag{13}
\]

where \(L_S \) are the SPLs at \(N_S \) measurement points being sampled in the source room, \(A \) is the surface area of the test window specimen, \(\rho_0 \) is the air density. According to Fig. 6, the above average is taken over the receiving region as specified in Section 2.1.

On the other side of the window, non-reflecting radiation boundary is applied to a semicircle. The transmitted SWL can be evaluated by integrating the radiated sound power along the semicircle as:

\[
L_R^W(f_c) = 10 \log \left(\frac{10^{14/10} dr}{(\rho_0 c_0)} \right), \tag{14}
\]

where \(L_R \) are the SPLs at the radiation boundary. Note that the receiving side can be also simulated using another reverberant room with rigid boundary conditions. Correspondingly, the SRI can be calculated from the difference between the averaged sound pressure levels in the source and receiving room.

To facilitate the calculation, acoustic module under commercial FEM solver COMSOL is used. The source room walls and the window panels are taken as rigid boundaries. A cylindrical radiation boundary is applied to the semicircle, with a radius of \(r_S = 4 \) m, centrally located at the midpoint of the outlet opening. The mesh criterion requires at least six nodes per wavelength, which is determined by the maximum frequency targeted in the calculation.
2.3. Micro-perforated panel (MPP) absorber

As shown in Fig. 2(c), an open double glazing incorporating a MPP absorber is considered for its possible acoustic benefit. MPPs have been known to be an efficient sound absorber whose in-situ absorption greatly depends on its designing parameters and surrounding environment [23,25]. The perforation parameters including the diameter of the perforations \(d \), panel thickness \(t \) and perforation ratio \(\sigma \) determine the specific acoustic impedance of a MPP, which can be analytically described by:

\[
z_{\text{mpp}} = \frac{32\mu t}{\rho c_0 \sigma d^3} \left[\left(1 + \frac{\gamma^2}{32} \right)^{1/2} + \frac{\sqrt{2}}{32} \kappa \right] \left[1 + \left(9 + \frac{\gamma^2}{2} \right)^{-1/2} + 0.85 \frac{d}{t} \right] + \frac{j \omega c_0 \sigma}{c_0 d} \left[1 + \left(9 + \frac{\gamma^2}{2} \right)^{-1/2} + 0.85 \frac{d}{t} \right],
\]

where \(\mu \) is the air viscosity, \(\gamma \) is the perforation constant \(\gamma = \sqrt{\rho c_0 \sigma / 4\mu} \).

As a resonant absorber, the MPP impedance together with the size of the backing cavity controls the effective frequency for sound absorption. The locally-reactive absorption coefficient of a MPP absorber under normal incidence condition (e.g., impedance tube) is:

\[
\alpha = \frac{4 \text{Re}(z_{\text{mpp}})}{\left| \text{Re}(z_{\text{mpp}}) \right|^2 + \left| \text{Im}(z_{\text{mpp}}) - \text{cot}(kD) \right|^2}
\]

where \(D \) is the backing cavity depth.

To verify the above formula which will be later incorporated into the numerical model, a MPP absorber sample is fabricated and analyzed for its acoustic characteristics. Fig. 7(a) shows the metal MPP fabricated by chemical etching technology, in which the hole size (0.23 mm) and the panel thickness (0.2 mm) are much smaller compared with the ones used by Kang and Brocklesby [3]. This helps to increase the MPP resistant part for a superior sound absorption performance and a wider absorption bandwidth [25]. As shown in Fig. 7(b) for two backing cavity depths \(D = 5 \) cm and \(D = 3 \) cm, the predicted absorption coefficient \(\alpha \) curves and the measured ones from the impedance tube are presented, showing excellent agreement. This implies the validity of Eq. (15) with very small holes. Note that if daylighting is required, MPP can be fabricated based on transparent material or even membranes.

3. Results and discussions

The SRI characteristics of various ventilation windows as shown in Fig. 2 are analyzed using the proposed numerical model. 2D simulations are conducted to save the computational cost. As shown in Fig. 8, an aperture on the wall between a source and a receiving field has a fixed total height of \(H = 1.5 \) m, where an open single glazing is mounted with an adjustable opening size \(O \). The SRIs for four opening sizes are simulated and presented in Fig. 8, showing relatively smooth responses. It can be seen that when \(O = 1.5 \) m, the predicted SRI varies around zero along the frequency, indicating that a full opening is nearly transparent to sound. With smaller opening sizes, the SRI curves are in similar trend but with higher values. Since the diffuse source room intends to provide a uniformly distributed incident field, it would be reasonable to assume the sound intensity impinging on the test specimen is nearly uniform. Hence, the transmitted power would be proportional to the area ratio between the opening and the total window height, i.e., \(O/H \). This allows an estimation of open single glazing SRI by simply considering the geometric factor:

\[
\text{SRI} = 10 \log(H/O).
\]

When decreasing the opening size from 0.75 m to 0.3 m, the above formula suggests a SRI of 3 dB for a half-open window \((O=0.75 \) m), 4.8 dB for a 1/3-open window \((O=0.5 \) m) and 7 dB for a 1/5-open \((O=0.3 \) m) window. In Fig. 8, these estimated values show good correlations with the predicted SRI curves. It is also noted that the insulation of a single glazing is relatively low. To maintain a SRI of minimum 10 dB, the window area that is allowed to open should be less than 1/10.
To improve the sound insulation, a second layer separated by a distance of \(W \) is added to form an open double glazing as illustrated in Fig. 9, with an acoustic cavity formed between the double glazing. The staggered openings have an identical size \(O \). The impedance mismatch at the inlet-outlet, as well as the cavity resonance effect makes the double glazing essentially like a duct silencer. Part of the incident energy is reflected back to the source domain in order to achieve sound attenuation. In Fig. 9, the spacing \(W \) is first set as 0.3 m and the effect of varying opening size is studied. It is seen that the SRI of the open double glazing shows resonant behavior in the low-to-mid frequencies, whereas the mid-to-high frequency response is rather flattened. As expected, a smaller opening size generally leads to a higher SRI. It is understandable that the cavity resonance effect is more significant at low frequencies, due to the modal coupling between the cavity and the inlet-outlet domain. This suggests that the low-to-mid frequency region is mainly resonance-controlled. As to the flattened SRI at higher frequencies, the formula in Eq. (17) can be extended to estimate the effect of a double glazing by only considering the geometrical factor. By assuming that the sound power entering through the inlet opening is sufficiently redistributed and thus the energy density is also uniform in the cavity, the ratio between the incident sound power from the source and transmitted power is \(O^2/H^2 \), leading to an estimated SRI of:

\[
SRI = 10 \log(H/O)^2 = 20 \log(H/O).
\]

Intuitively, the validity of this assumption would be above the cut-off frequency of the duct, formed between the double glazing with a width of \(W \). This frequency limit is 560 Hz for \(W = 0.3 \) m. As seen in Fig. 9, the predicted SRI responses for the three opening sizes in the flattened region correlate well with the estimated values starting from 500 Hz, suggesting a primarily geometry-controlled effect.

For both open single and double glazing, the estimated SRIs versus decreasing opening size \(O \), predicted using Eqs. (17) and (18), respectively, are plotted in Fig. 10. It is seen that reducing the opening gradually results in higher noise reduction, and this trend is more obvious with open double glazing. In addition, Fig. 11 depicts the variation of SRI with different spacing \(W \) (depth of the cavity), where the opening size is kept as \(O = 0.5 \) m. The general trend is that larger spacing performs better at lower frequencies, although the difference is not distinct. While at high frequencies, the three curves show similar SRI of 10 dB, in agreement with Eq. (18).

The MPP absorber as discussed in Section 2.3 is incorporated into the open double glazing. The perforation parameters are \(d = 0.23 \) mm, \(t = 0.2 \) mm, \(\sigma = 0.8\% \), and the double glazing with \(O = 0.5 \) m and \(W = 0.3 \) m is taken as benchmark for comparisons. The cavity backing the MPP is partitioned with honeycomb structures. With \(D = 0.05 \) m, Fig. 12 presents a comparison between the open single glazing, open double glazing with and without MPP absorber, with \(O/H \) being kept as 1/3. From 315 Hz to 2000 Hz, the SRI of the open single glazing is low with a mean value of 5 dB, which increases to 10 dB with the open double glazing. Adding MPP absorber shows a significant improvement, as evidenced by a flattened SRI reaching as high as 20 dB. By simply using a term \(\alpha_w \) to describe the percentage of sound energy absorbed by the MPP in the cavity, Eq. (18) can be extended to tentatively explain this effect:

\[
SRI = 20 \log(H/O) - 10 \log(1 - \alpha_w),
\]

where \(\alpha_w \) depends on a number of factors such as the MPP absorption coefficient \(\alpha \), the double glazing orientation, and the size and location of the MPP.

The depth \(D \) of the backing cavity behind MPP can be varied to control the effective frequencies. Fig. 13 shows the SRI results for

Fig. 8. Sound reduction index of an open single glazing with adjustable opening size \(O \) in one-third octave band.

Fig. 9. Sound reduction index of open double glazing with adjustable opening size \(O \), the spacing between glazing is \(W = 0.3 \) m.
three cavity depths with \(D = 0.03 \) m, 0.05 m and 0.1 m, where the corresponding \(a \) curves calculated using Eq. (16) are appended. With a larger depth value, the sound attenuation is more effective at lower frequencies, as expected. The SRI comparison also shows the possibility of achieving an optimized performance in a prescribed frequency range by tuning the system parameters.

As an experimental validation, the proposed numerical model is used to evaluate the sound insulation of several ventilation windows tested in an experimental study \[7,8\]. As shown in Fig. 14, four typical window configurations were selected from the measurement report, namely: (a) a standard top-hung window (open single glazing) with a height of 1.49 m; (b) an open double glazing with a height of 1.49 m; (c) a larger open double glazing (height 2.38 m); and (d) a double glazing treated with sound absorbing material on the glass and frame (height 2.38 m). The window is opened through sashes, where the size of the openings is kept as 0.3 m for all cases, as shown in Fig. 14. The 3D windows can be considered as extrusions from the corresponding 2D cross-sections, with a window width of 1.2 m. 2D model is used to simulate a cross-section of the window. The SRI measurement was conducted according to ISO10140, with a reverberant source room of size 120 m\(^3\) and a receiving room size of 60 m\(^3\) \[8\].

In Fig. 15, the predicted SRIs using the proposed model for cases E1 to E2, and the experimental SRIs from the reference report are compared, showing generally good agreements. The discrepancies are less than 2 dB, which may be affected by various reasons such as experimental variability, geometry uncertainty, unknown air damping, and flanking transmission. The overall prediction accuracy is acceptable. The lowest black curve corresponds to SRI of the top-hung window E1 \[Fig. 14(a)\]. With an opening size of 0.3 m, i.e., 1/5 of the total window height, the SRI value is about 7–8 dB, matching with Eq. (17). The double-glazing window E2 \[Fig. 14(b)\] doubles the SRI to 15 dB at frequencies above 600 Hz, and the resonance effect at lower frequencies attributed to the cavity longitudinal mode is seen. The third case E3 \[Fig. 14(c)\] increases the height of the double-glazing window, reducing the opening area to 1/8 of the total height. The resultant SRI seems like a parallel transport of E2 SRI with an increment of 3 dB. For case E4, porous sound absorbing material is added onto the window glass and frame. The thickness of the absorber is 0.04 m and 0.02 m on the two window glasses, and 0.02 m on the frame enclosing the cavity. The simulation model treats the absorber as a homogenous acoustic domain using the simplest Delany-Bazley model, where the flow resistivity is assumed as 50,000 Pa s/m\(^2\). The SRI shows a distinct improvement compared with the previous three cases with rigid surfaces. The effectiveness of using internal sound absorber to enhance the sound insulation of an open double glazing is clearly demonstrated.
4. Conclusions

To numerically evaluate the sound insulation of ventilation windows, a simulation model which complies with the recommendations in the ISO standard has been proposed. The model consists of an acoustic cavity with rigid boundaries on the source side to provide a diffuse field condition, and a free field radiation with an infinite baffle at the receiver side. To ensure adequate diffuseness, the uniformity of the pressure field within the source room has been verified using a proposed theoretical model. Examinations on the distribution of room modes and standard deviation of SPLs indicate that the source field has reasonable diffuseness in the interested frequency range from 125 Hz to 2000 Hz.

Simulations using the proposed model have been carried out to investigate the SRI characteristics of some typical ventilation window configurations. From the numerical results, a partially open single glazing is shown to exhibit a smooth SRI response in the entire frequency range. The insulation is rather low and marginally acceptable for practical noise control. By adding a second layer, the open double glazing with staggered openings shows an improved sound insulation with the same opening size. Results suggest that the SRI of the double glazing is mainly controlled by the cavity resonance effect in the low-to-mid frequency range, which transits into a geometry-controlled region at higher frequencies, featuring a flattened SRI response. As to the effect of varying the opening size, two simple formulas have been suggested to estimate the SRI of both open single- and double-glazing, which can be used to guide the practical design of ventilation windows.

To illustrate the acoustic benefit of adding sound absorbers into the cavity between the double glazing, a MPP has been incorporated into the simulation model, with its characteristics being
verified using a fabricated sample. Placing a MPP with a honeycomb backing cavity in front of the second glazing allows achieving a moderate SRI of roughly 20 dB in the frequencies above 250 Hz. This value was 10 dB higher than its counterpart without MPP, and 15 dB higher than the open single glazing. Such window design can sought as a promising product by properly choosing the window and absorber parameters, where the proposed numerical tool can be exploited to effectively tune the system parameters.

Acknowledgements

This material is based on research/work supported by the Singapore Ministry of National Development and National Research Foundation under L2 NIC award No. L2NICCFP1-2013-9. We would also like to show our gratitude to Søndergaard and Egedal from DELTA for sharing some of their designs and experimental data.

References